Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid
Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed...
Saved in:
Published in: | Canadian journal of chemical engineering Vol. 102; no. 7; pp. 2608 - 2627 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-07-2024
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed that the nanofluid is favourable in enhancing the mass transfer rate. The effect of pulsing velocity on kLa is observed to fall under two regimes: the dispersion regime and emulsion regime. The kLa enhancement factor is found to be higher in TiO2 nanofluid than in α‐Fe2O3 nanofluid, indicating that the type of nanofluid influences the enhancement factor. The order of magnitude analysis showed that localized convection triggered by the Brownian motion of nanoparticles is the phenomenon responsible for kLa enhancement. A dimensionless multiple regression analysis (MRA) model was developed to predict kLa in the nanoparticle loading range of 0.003–0.019 (v/v%), relating the Sherwood number with oscillating Reynolds number (1200 ≤ Reo ≤ 20,000), gas flow Reynolds number (0.135 ≤ Reg ≤0.370), Schmidt number (1300 ≤ Sc ≤2700), and Brownian Reynolds number (2.81 × 10−4 ≤ ReB ≤5 × 10−4). The pseudo‐homogeneous model could accurately predict the enhancement until critical loading conditions. |
---|---|
AbstractList | Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed that the nanofluid is favourable in enhancing the mass transfer rate. The effect of pulsing velocity on kLa is observed to fall under two regimes: the dispersion regime and emulsion regime. The kLa enhancement factor is found to be higher in TiO2 nanofluid than in α‐Fe2O3 nanofluid, indicating that the type of nanofluid influences the enhancement factor. The order of magnitude analysis showed that localized convection triggered by the Brownian motion of nanoparticles is the phenomenon responsible for kLa enhancement. A dimensionless multiple regression analysis (MRA) model was developed to predict kLa in the nanoparticle loading range of 0.003–0.019 (v/v%), relating the Sherwood number with oscillating Reynolds number (1200 ≤ Reo ≤ 20,000), gas flow Reynolds number (0.135 ≤ Reg ≤0.370), Schmidt number (1300 ≤ Sc ≤2700), and Brownian Reynolds number (2.81 × 10−4 ≤ ReB ≤5 × 10−4). The pseudo‐homogeneous model could accurately predict the enhancement until critical loading conditions. |
Author | Shet, Amruta S. Shetty K., Vidya |
Author_xml | – sequence: 1 givenname: Amruta S. surname: Shet fullname: Shet, Amruta S. organization: National Institute of Technology Karnataka – sequence: 2 givenname: Vidya surname: Shetty K. fullname: Shetty K., Vidya email: vidyaks68@yahoo.com, vidyaks95@nitk.edu.in organization: National Institute of Technology Karnataka |
BookMark | eNotkE1OwzAQhS1UJNrChhNYYktg7Pw4WaKq5UdI3YDELnLjSXHl2iFOaLvjBnAVLsIhOAkusJp5b55Get-IDKyzSMgpgwsGwC-rVYUXPOUgDsiQFXERASueBmQIAHmUQJwckZH3qyA5JGxI3qfbBlu9RttJQ7V9Rd_ppey0s-d07RQao-3ynEqrqGsVttTVdC2XVne9wmBLs_Pa71233S3RhqP3tGul9XVIa0ub3nhUtDGyQ1o5068t3ejumX59fr99zJDPY2qldbXptTomh7UM-ZP_OSaPs-nD5Ca6n1_fTq7uo4bzVEQZ5EpVC0SJKHIRB50xXqcFryFFLrEQGU8EY7mCQgrJBGBW5arIC7GARR2Pydnf36Z1L30oXa5c34Y2vowhS0EkMUtDiv2lNtrgrmwCKNnuSgblnna5p13-0i4nd5Pp7xb_ACnwemU |
ContentType | Journal Article |
Copyright | 2024 Canadian Society for Chemical Engineering. 2024 Canadian Society for Chemical Engineering |
Copyright_xml | – notice: 2024 Canadian Society for Chemical Engineering. – notice: 2024 Canadian Society for Chemical Engineering |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/cjce.25207 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-019X |
EndPage | 2627 |
ExternalDocumentID | CJCE25207 |
Genre | researchArticle |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 123 1L6 1OB 1OC 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABEFU ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IAO ICQ ISN ISR ITC JPC LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TAE TN5 TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WSB WXSBR WYISQ XV2 ZY4 ZZTAW ~02 ~IA ~WT 7SR 7U5 8BQ 8FD AAMNL JG9 L7M |
ID | FETCH-LOGICAL-p2257-608ddcbeeaee7873608612f592f05e2ae976247118d09a7a170e6c8d9897b0bf3 |
IEDL.DBID | 33P |
ISSN | 0008-4034 |
IngestDate | Thu Nov 21 04:34:51 EST 2024 Sat Aug 24 00:58:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2257-608ddcbeeaee7873608612f592f05e2ae976247118d09a7a170e6c8d9897b0bf3 |
PQID | 3065074315 |
PQPubID | 2045184 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3065074315 wiley_primary_10_1002_cjce_25207_CJCE25207 |
PublicationCentury | 2000 |
PublicationDate | July 2024 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Canadian journal of chemical engineering |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2013; 3 2010; 15 2013; 1 2013; 2 2018; 205 2009; 83 2013; 64 2016; 145 2003; 58 2019; 206 1991; 117 2016; 37 2020; 208 2012; 10 2014; 378 2014; 22 2013; 9 1985; 24 1959; 5 2018; 8 2010; 27 2015; 87 2006; 29 2014; 14 2014; 19 2007; 62 2015; 90 2003; 42 2014; 99 2018; 36 2010; 8 2019; 7 2019; 5 2015; 53 2015; 54 2012; 35 2010; 44 2016; 6 2010; 49 2018; 195 2006; 45 2018; 118 2005; 8 2011; 86 2008; 43 2008; 138 2011; 89 2008; 42 2016; 170 2018; 99 1998; 76 2018; 10 2022; 346 2003; 20 1990; 6 2016; 23 2009; 106 2022; 254 2017; 7 2015; 182 2017; 8 2012; 2012 2007; 140 2013; 21 2015; 105 2019; 55 2016; 100 2020; 123 2016; 104 2012; 55 2009; 48 1955; 1 2012; 51 2021; 37 2013; 17 2003; 92 2015; 40 2008; 63 2017; 242 2011; 163 2006; 128 2014; 56 2019; 197 2007; 27 2014; 53 2010; 408 2014; 92 2015; 3 2009; 20 2015; 202 1985; 2 1999; 150 2017; 23 2017; 170 2006; 6 2016; 50 2017; 176 2012; 424 2014; 82 2009; 27 2005; 44 2016; 55 1994; 127 2012; 90 2013; 39 1990; 68 2006; 89 2019; 88 2017; 12 1988; 66 2017 2009; 7 2012; 7 2001; 79 2012; 5 2007; 46 2014; 76 |
References_xml | – volume: 99 start-page: 285 year: 2018 publication-title: Phys. E Low‐Dimensional Syst. Nanostructures – volume: 55 start-page: 2061 year: 2019 publication-title: Heat Mass Transf. Und Stoffuebertragung – volume: 53 start-page: 174 year: 2015 publication-title: Phys. Chem. Liq. – volume: 76 start-page: 379 year: 1998 publication-title: Can. J. Chem. Eng. – volume: 92 start-page: 151 year: 2003 publication-title: Chem. Eng. J. – volume: 150 year: 1999 – volume: 2 start-page: 519 year: 1985 publication-title: Biotechnology – volume: 14 start-page: 1 year: 2014 publication-title: BMC Biotechnol. – volume: 206 start-page: 509 year: 2019 publication-title: Chem. Eng. Commun. – volume: 39 start-page: 348 year: 2013 publication-title: Energy Procedia – volume: 100 start-page: 39 year: 2016 publication-title: Int. J. Heat Mass Transfer – volume: 195 start-page: 208 year: 2018 publication-title: Sep. Purif. Technol. – volume: 37 start-page: 387 year: 2016 publication-title: Heat Transf. Eng. – volume: 49 start-page: 390 year: 2010 publication-title: Ind. Eng. Chem. Res. – volume: 20 start-page: 347 year: 2003 publication-title: Korean J. Chem. Eng. – volume: 44 start-page: 1285 year: 2005 publication-title: Chem. Eng. Process. Process Intensif. – volume: 10 start-page: 1 year: 2018 publication-title: Adv. Mech. Eng. – volume: 27 start-page: 7632 year: 2007 publication-title: Heat Transfer Eng. – volume: 45 start-page: 4355 year: 2006 publication-title: Ind. Eng. Chem. Res. – volume: 205 start-page: 610 year: 2018 publication-title: Chem. Eng. Commun. – volume: 2012 start-page: 9 year: 2012 publication-title: J. Nanomater. – volume: 7 start-page: 2288 year: 2017 publication-title: RSC Adv. – volume: 54 start-page: 411 year: 2015 publication-title: Rheol. Acta – volume: 76 start-page: 484 year: 2014 publication-title: Int. J. Heat Mass Transfer – volume: 140 start-page: 346 year: 2007 publication-title: J. Hazard. Mater. – volume: 128 start-page: 588 year: 2006 publication-title: J. Heat Transfer – volume: 127 start-page: 169 year: 1994 publication-title: Chem. Eng. Commun. – volume: 378 start-page: 1845 year: 2014 publication-title: Phys. Lett. Sect. A Gen. At. Solid State Phys. – volume: 6 start-page: 1 year: 1990 publication-title: Bioprocess Eng. – volume: 79 start-page: 107 year: 2001 publication-title: Food Bioprod. Process. – volume: 197 start-page: 345 year: 2019 publication-title: Chem. Eng. Sci. – volume: 182 start-page: 82 year: 2015 publication-title: Bioresour. Technol. – volume: 7 start-page: 55326 year: 2017 publication-title: RSC Adv. – volume: 8 start-page: 587 year: 2018 publication-title: Appl. Sci. – volume: 7 start-page: 1 year: 2012 publication-title: Nanoscale Res. Lett. – volume: 90 start-page: 1570 year: 2012 publication-title: Can. J. Chem. Eng. – volume: 163 start-page: 27 year: 2011 publication-title: J. Mol. Liq. – volume: 170 start-page: 130 year: 2016 publication-title: Sep. Purif. Technol. – volume: 83 start-page: 377 year: 2009 publication-title: Appl. Microbiol. Biotechnol. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 89 start-page: 508 year: 2011 publication-title: Can. J. Chem. Eng. – volume: 8 start-page: 36 year: 2005 publication-title: Mater. Today – volume: 15 year: 2010 publication-title: J. Appl. Phys. – volume: 48 start-page: 1294 year: 2009 publication-title: Int. J. Therm. Sci. – volume: 408 start-page: 1745 year: 2010 publication-title: Sci. Total Environ. – volume: 5 start-page: 271 year: 2012 publication-title: Asian J. Sci. Res. – volume: 87 start-page: 49 year: 2015 publication-title: Int. J. Therm. Sci. – volume: 64 start-page: 251 year: 2013 publication-title: Int. J. Therm. Sci. – volume: 17 start-page: 252 year: 2013 publication-title: Biorem. J. – volume: 12 year: 2017 publication-title: J. Therm. Sci. Technol. – volume: 170 start-page: 400 year: 2017 publication-title: Chem. Eng. Sci. – volume: 55 start-page: 3447 year: 2012 publication-title: Int. J. Heat Mass Transfer – volume: 27 start-page: 243 year: 2010 publication-title: Braz. J. Chem. Eng. – volume: 55 start-page: 4682 year: 2016 publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: 151 year: 2009 publication-title: Particuology – volume: 3 year: 2013 publication-title: Interface Focus – volume: 106 start-page: 34909 year: 2009 publication-title: J. Appl. Phys. – volume: 58 start-page: 4719 year: 2003 publication-title: Chem. Eng. Sci. – volume: 202 start-page: 500 year: 2015 publication-title: Chem. Eng. Commun. – volume: 346 year: 2022 publication-title: J. Mol. Liq. – volume: 42 start-page: 5363 year: 2003 publication-title: Ind. Eng. Chem. Res. – volume: 37 year: 2021 publication-title: Biotechnol. Prog. – volume: 5 start-page: 75 year: 2019 publication-title: Fermentation – volume: 123 year: 2020 publication-title: Int. J. Multiph. Flow – volume: 202 start-page: 600 year: 2015 publication-title: Chem. Eng. Commun. – volume: 424 start-page: 1 year: 2012 publication-title: Sci. Total Environ. – start-page: 19 year: 2017 – volume: 62 start-page: 7391 year: 2007 publication-title: Chem. Eng. Sci. – volume: 104 start-page: 84 year: 2016 publication-title: Chem. Eng. Process. Process Intensif. – volume: 90 start-page: 1098 year: 2015 publication-title: Int. J. Heat Mass Transfer – volume: 242 start-page: 537 year: 2017 publication-title: J. Mol. Liq. – volume: 66 start-page: 192 year: 1988 publication-title: Can. J. Chem. Eng. – volume: 89 start-page: 89 year: 2006 publication-title: Appl. Phys. Lett. – volume: 1 start-page: 264 year: 1955 publication-title: AIChE J. – volume: 86 start-page: 1310 year: 2011 publication-title: J. Chem. Technol. Biotechnol. – volume: 22 start-page: 1 year: 2014 publication-title: DARU J. Pharm. Sci. – volume: 105 start-page: 431 year: 2015 publication-title: Procedia Eng. – volume: 208 start-page: 1653 year: 2020 publication-title: Chem. Eng. Commun. – volume: 138 start-page: 389 year: 2008 publication-title: Chem. Eng. J. – volume: 3 start-page: 46 year: 2015 publication-title: Trans. Phenom. Nano Micro Scales – volume: 43 start-page: 3036 year: 2008 publication-title: Sep. Sci. Technol. – volume: 118 start-page: 527 year: 2018 publication-title: Renewable Energy – volume: 24 start-page: 368 year: 1985 publication-title: Ind. Eng. Chem. Fundam. – volume: 88 start-page: 311 year: 2019 publication-title: Int. J. Greenh. Gas Control – volume: 29 start-page: 22 year: 2006 publication-title: Int. J. Refrig. – volume: 82 start-page: 84 year: 2014 publication-title: Int. J. Therm. Sci. – volume: 10 start-page: 1 year: 2012 publication-title: Int. J. Chem. React. Eng. – volume: 35 start-page: 1402 year: 2012 publication-title: Int. J. Refrig. – volume: 8 start-page: 8 year: 2010 publication-title: Int. J. Chem. React. Eng. – volume: 254 year: 2022 publication-title: Chem. Eng. Sci. – volume: 53 start-page: 6185 year: 2014 publication-title: Ind. Eng. Chem. Res. – volume: 36 start-page: 66 year: 2018 publication-title: Solvent Extr. Ion Exch. – volume: 46 start-page: 2295 year: 2007 publication-title: Ind. Eng. Chem. Res. – volume: 42 start-page: 5384 year: 2008 publication-title: Environ. Sci. Technol. – volume: 63 start-page: 5120 year: 2008 publication-title: Chem. Eng. Sci. – volume: 50 start-page: 49 year: 2016 publication-title: Int. J. Greenh. Gas Control – volume: 51 start-page: 5157 year: 2012 publication-title: Ind. Eng. Chem. Res. – volume: 176 start-page: 107 year: 2017 publication-title: Sep. Purif. Technol. – volume: 6 start-page: 419 year: 2006 publication-title: Nano Lett. – volume: 99 start-page: 67 year: 2014 publication-title: Sol. Energy – volume: 19 start-page: 345 year: 2014 publication-title: Environ. Eng. Res. – volume: 202 start-page: 1493 year: 2015 publication-title: Chem. Eng. Commun. – volume: 92 start-page: 2313 year: 2014 publication-title: Chem. Eng. Res. Des. – volume: 1 start-page: 24 year: 2013 publication-title: Am. J. Chem. Eng. – volume: 53 start-page: 16851 year: 2014 publication-title: Ind. Eng. Chem. Res. – volume: 8 year: 2017 publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. – volume: 56 start-page: 235 year: 2014 publication-title: Indian Chem. Eng. – volume: 117 start-page: 126 year: 1991 publication-title: J. Environ. Eng. – volume: 21 start-page: 983 year: 2013 publication-title: Chin. J. Chem. Eng. – volume: 40 start-page: 4502 year: 2015 publication-title: Int. J. Hydrogen Energy – volume: 145 start-page: 233 year: 2016 publication-title: Chem. Eng. Sci. – volume: 23 start-page: 38 year: 2017 publication-title: S. Afr. J. Chem. Eng. – volume: 7 year: 2019 publication-title: J. Environ. Chem. Eng. – volume: 9 start-page: 541 year: 2013 publication-title: Brazilian J. Chem – volume: 20 year: 2009 publication-title: Nanotechnology – volume: 7 start-page: 8908 year: 2017 publication-title: RSC Adv. – volume: 44 start-page: 815 year: 2010 publication-title: Water Res. – volume: 2 start-page: 266 year: 2013 publication-title: Adv. Nanoparticles – volume: 68 start-page: 952 year: 1990 publication-title: Can. J. Chem. Eng. – volume: 27 start-page: 153 year: 2009 publication-title: Biotechnol. Adv. – volume: 23 start-page: 20055 year: 2016 publication-title: Environ. Sci. Pollut. Res. – volume: 5 start-page: 446 year: 1959 publication-title: AIChE J. |
SSID | ssj0002041 |
Score | 2.4170759 |
Snippet | Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 2608 |
SubjectTerms | Bioreactors Critical loading Design parameters Dimensionless analysis enhancement factor Fluid dynamics Fluid flow Gas flow Mass transfer Multiple regression analysis Nanofluids Nanoparticles Oxygen Plate columns pulsed plate column pulsing velocity Regression models Reynolds number Schmidt number Titanium dioxide α‐Fe2O3 nanofluid |
Title | Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.25207 https://www.proquest.com/docview/3065074315 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA06K134Fh-jZOFKpk6bvlJwI2OHwYUKKrgraR4wommxU9Cdf6C_4o_4EX6JN-m8XIq7vAol95GTS-65CB0JNxA8FLHDFYmcAO4QDgOn6LDYFLHzVJzbeMfgJr68p-epock5neTCNPwQ04CbsQzrr42Bs7zqzkhD-QOXJyQkNpUcrgk2f8O_nrph4gbjcnkULkl-MOUmJd3Zp79w5Tw6tcdLf_V_P7aGVsawEp81erCOFqTeQMtzZIOb6D2dI_PHwxm_RqE72BbEMZnpHcy0wJaQExcKPzHzuqgWEoYb9hIzWry8gt7BZFXhkUW-sHqocVnDQStw-QgAFnPj9zQ2gV789fn99tGX5MrHmulCPdZDsYXu-ultb-CMyzE4JRh97EQuFYLnUjIpwcx96AM8UmFClBtKwiQgGwJnnUeFm7CYebErI05FQhOQeK78bdTShZY7CEdunntJ7nPGBMiGJZwSxShoB4WWF-6i9kQs2dimqszUuLeAB6aPrQCysmHkyBruZZKZrc_s1me9i15qW3t_WbyPlgigluY9bhu1Rs-1PECLlagPrXb9ACF71Nw |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTsMwFLWgLIAFM2Io4AUr1EDiTM6CBSqtCpSCRJHYRY7tSEXFqWgjwY4bwFW4CIfgJHw7nVgidp4iRf6Dn7_830foUNie4L4ILZ6SwPLgDmExcIoWC3UROycNExPvaNyFrQd6XtM0OaejXJiCH2IccNOWYfy1NnAdkD6ZsIbyRy6PiU90LvmcF4Am6gwO93bsiIntDQvmUbgmud6YnZScTL79hSyn8ak5YOrL__y1FbQ0RJb4rFCFVTQj1RpanOIbXEfvtSk-f9yZUGxkqoJNTRydnF7BTAlsODlxluInph8Y5ULCcEFgokezl1dQPZjs9_HAgF9Y3VG4l8NZK3CvCxgWc-36FNaxXvz1-f32UZfkxsWKqSzt5h2xge7rtXa1YQ0rMlg9sPvQCmwqBE-kZFKCpbvQB4SU-hFJbV8SJgHcEDjuHCrsiIXMCW0ZcCoiGoHQk9TdRCWVKbmFcGAniRMlLmdMgHBYxClJGQUFodBy_G1UHsklHppVP9Zl7g3mgekjI4G4V5ByxAX9Mon11sdm6-PqZbVmWjt_WXyA5hvt62bcvGhd7aIFAiCmeJ5bRqXBcy730Gxf5PtG1X4AlbPZBA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsQwGA4uIHpwF3dz8CRTp03baQpeZBbGBR1QwVtJs8DImBbHgt58A30VX8SH8En8k87mUbxlK5T8S7785P9-hA6FGwgeisjhitScAO4QDgOn6LDIFLHzVJTaeEf7Jrq6p42mock5GebClPwQo4CbsQzrr42B50JVx6Sh_IHLYxISk0o-GwAON8z5vt8Z-WHiBoN6eRRuSX4wIicl1fG3v4DlJDy150tr6X9_towWB7gSn5aKsIKmpF5FCxNsg2vovTnB5o-7Y4KNTFewrYhjUtMrmGmBLSMnzhR-ZOZ5USEkDJf0JWY0e3kFxYPJfh8_W-gLq7sa5wWctALnPUCwmBvHp7GJ9OKvz--3j5Yk1z7WTGeqV3TFOrprNW_rbWdQj8HJweojp-ZSIXgqJZMS7NyHPuAjFcZEuaEkTAK0IXDYeVS4MYuYF7myxqmIaQwiT5W_gWZ0puUmwjU3Tb049TljAmTDYk6JYhTUg0LLC7fQ7lAsycCo-okpcm8RD0wfWQEkeUnJkZTkyyQxW5_YrU_q5_WmbW3_ZfEBmus0Wsnl2dXFDpongGDKt7m7aOb5qZB7aLovin2raD8dHNeq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation%2C+modelling%2C+and+order+of+magnitude+analysis+of+oxygen+mass+transfer+in+pulsed+plate+column+with+%CE%B1%E2%80%90Fe2O3+nanofluid&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Shet%2C+Amruta+S.&rft.au=Shetty+K.%2C+Vidya&rft.date=2024-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=102&rft.issue=7&rft.spage=2608&rft.epage=2627&rft_id=info:doi/10.1002%2Fcjce.25207&rft.externalDBID=10.1002%252Fcjce.25207&rft.externalDocID=CJCE25207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon |