Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid

Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of chemical engineering Vol. 102; no. 7; pp. 2608 - 2627
Main Authors: Shet, Amruta S., Shetty K., Vidya
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-07-2024
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed that the nanofluid is favourable in enhancing the mass transfer rate. The effect of pulsing velocity on kLa is observed to fall under two regimes: the dispersion regime and emulsion regime. The kLa enhancement factor is found to be higher in TiO2 nanofluid than in α‐Fe2O3 nanofluid, indicating that the type of nanofluid influences the enhancement factor. The order of magnitude analysis showed that localized convection triggered by the Brownian motion of nanoparticles is the phenomenon responsible for kLa enhancement. A dimensionless multiple regression analysis (MRA) model was developed to predict kLa in the nanoparticle loading range of 0.003–0.019 (v/v%), relating the Sherwood number with oscillating Reynolds number (1200 ≤ Reo ≤ 20,000), gas flow Reynolds number (0.135 ≤ Reg ≤0.370), Schmidt number (1300 ≤ Sc ≤2700), and Brownian Reynolds number (2.81 × 10−4 ≤ ReB ≤5 × 10−4). The pseudo‐homogeneous model could accurately predict the enhancement until critical loading conditions.
AbstractList Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the influence of α‐Fe2O3 nanofluid on the enhancement of kLa is studied in a pulsed plate column (PPC). An enhancement factor of greater than one showed that the nanofluid is favourable in enhancing the mass transfer rate. The effect of pulsing velocity on kLa is observed to fall under two regimes: the dispersion regime and emulsion regime. The kLa enhancement factor is found to be higher in TiO2 nanofluid than in α‐Fe2O3 nanofluid, indicating that the type of nanofluid influences the enhancement factor. The order of magnitude analysis showed that localized convection triggered by the Brownian motion of nanoparticles is the phenomenon responsible for kLa enhancement. A dimensionless multiple regression analysis (MRA) model was developed to predict kLa in the nanoparticle loading range of 0.003–0.019 (v/v%), relating the Sherwood number with oscillating Reynolds number (1200 ≤ Reo ≤ 20,000), gas flow Reynolds number (0.135 ≤ Reg ≤0.370), Schmidt number (1300 ≤ Sc ≤2700), and Brownian Reynolds number (2.81 × 10−4 ≤ ReB ≤5 × 10−4). The pseudo‐homogeneous model could accurately predict the enhancement until critical loading conditions.
Author Shet, Amruta S.
Shetty K., Vidya
Author_xml – sequence: 1
  givenname: Amruta S.
  surname: Shet
  fullname: Shet, Amruta S.
  organization: National Institute of Technology Karnataka
– sequence: 2
  givenname: Vidya
  surname: Shetty K.
  fullname: Shetty K., Vidya
  email: vidyaks68@yahoo.com, vidyaks95@nitk.edu.in
  organization: National Institute of Technology Karnataka
BookMark eNotkE1OwzAQhS1UJNrChhNYYktg7Pw4WaKq5UdI3YDELnLjSXHl2iFOaLvjBnAVLsIhOAkusJp5b55Get-IDKyzSMgpgwsGwC-rVYUXPOUgDsiQFXERASueBmQIAHmUQJwckZH3qyA5JGxI3qfbBlu9RttJQ7V9Rd_ppey0s-d07RQao-3ynEqrqGsVttTVdC2XVne9wmBLs_Pa71233S3RhqP3tGul9XVIa0ub3nhUtDGyQ1o5068t3ejumX59fr99zJDPY2qldbXptTomh7UM-ZP_OSaPs-nD5Ca6n1_fTq7uo4bzVEQZ5EpVC0SJKHIRB50xXqcFryFFLrEQGU8EY7mCQgrJBGBW5arIC7GARR2Pydnf36Z1L30oXa5c34Y2vowhS0EkMUtDiv2lNtrgrmwCKNnuSgblnna5p13-0i4nd5Pp7xb_ACnwemU
ContentType Journal Article
Copyright 2024 Canadian Society for Chemical Engineering.
2024 Canadian Society for Chemical Engineering
Copyright_xml – notice: 2024 Canadian Society for Chemical Engineering.
– notice: 2024 Canadian Society for Chemical Engineering
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/cjce.25207
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-019X
EndPage 2627
ExternalDocumentID CJCE25207
Genre researchArticle
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IAO
ICQ
ISN
ISR
ITC
JPC
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WSB
WXSBR
WYISQ
XV2
ZY4
ZZTAW
~02
~IA
~WT
7SR
7U5
8BQ
8FD
AAMNL
JG9
L7M
ID FETCH-LOGICAL-p2257-608ddcbeeaee7873608612f592f05e2ae976247118d09a7a170e6c8d9897b0bf3
IEDL.DBID 33P
ISSN 0008-4034
IngestDate Thu Nov 21 04:34:51 EST 2024
Sat Aug 24 00:58:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2257-608ddcbeeaee7873608612f592f05e2ae976247118d09a7a170e6c8d9897b0bf3
PQID 3065074315
PQPubID 2045184
PageCount 20
ParticipantIDs proquest_journals_3065074315
wiley_primary_10_1002_cjce_25207_CJCE25207
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Canadian journal of chemical engineering
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2013; 3
2010; 15
2013; 1
2013; 2
2018; 205
2009; 83
2013; 64
2016; 145
2003; 58
2019; 206
1991; 117
2016; 37
2020; 208
2012; 10
2014; 378
2014; 22
2013; 9
1985; 24
1959; 5
2018; 8
2010; 27
2015; 87
2006; 29
2014; 14
2014; 19
2007; 62
2015; 90
2003; 42
2014; 99
2018; 36
2010; 8
2019; 7
2019; 5
2015; 53
2015; 54
2012; 35
2010; 44
2016; 6
2010; 49
2018; 195
2006; 45
2018; 118
2005; 8
2011; 86
2008; 43
2008; 138
2011; 89
2008; 42
2016; 170
2018; 99
1998; 76
2018; 10
2022; 346
2003; 20
1990; 6
2016; 23
2009; 106
2022; 254
2017; 7
2015; 182
2017; 8
2012; 2012
2007; 140
2013; 21
2015; 105
2019; 55
2016; 100
2020; 123
2016; 104
2012; 55
2009; 48
1955; 1
2012; 51
2021; 37
2013; 17
2003; 92
2015; 40
2008; 63
2017; 242
2011; 163
2006; 128
2014; 56
2019; 197
2007; 27
2014; 53
2010; 408
2014; 92
2015; 3
2009; 20
2015; 202
1985; 2
1999; 150
2017; 23
2017; 170
2006; 6
2016; 50
2017; 176
2012; 424
2014; 82
2009; 27
2005; 44
2016; 55
1994; 127
2012; 90
2013; 39
1990; 68
2006; 89
2019; 88
2017; 12
1988; 66
2017
2009; 7
2012; 7
2001; 79
2012; 5
2007; 46
2014; 76
References_xml – volume: 99
  start-page: 285
  year: 2018
  publication-title: Phys. E Low‐Dimensional Syst. Nanostructures
– volume: 55
  start-page: 2061
  year: 2019
  publication-title: Heat Mass Transf. Und Stoffuebertragung
– volume: 53
  start-page: 174
  year: 2015
  publication-title: Phys. Chem. Liq.
– volume: 76
  start-page: 379
  year: 1998
  publication-title: Can. J. Chem. Eng.
– volume: 92
  start-page: 151
  year: 2003
  publication-title: Chem. Eng. J.
– volume: 150
  year: 1999
– volume: 2
  start-page: 519
  year: 1985
  publication-title: Biotechnology
– volume: 14
  start-page: 1
  year: 2014
  publication-title: BMC Biotechnol.
– volume: 206
  start-page: 509
  year: 2019
  publication-title: Chem. Eng. Commun.
– volume: 39
  start-page: 348
  year: 2013
  publication-title: Energy Procedia
– volume: 100
  start-page: 39
  year: 2016
  publication-title: Int. J. Heat Mass Transfer
– volume: 195
  start-page: 208
  year: 2018
  publication-title: Sep. Purif. Technol.
– volume: 37
  start-page: 387
  year: 2016
  publication-title: Heat Transf. Eng.
– volume: 49
  start-page: 390
  year: 2010
  publication-title: Ind. Eng. Chem. Res.
– volume: 20
  start-page: 347
  year: 2003
  publication-title: Korean J. Chem. Eng.
– volume: 44
  start-page: 1285
  year: 2005
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 10
  start-page: 1
  year: 2018
  publication-title: Adv. Mech. Eng.
– volume: 27
  start-page: 7632
  year: 2007
  publication-title: Heat Transfer Eng.
– volume: 45
  start-page: 4355
  year: 2006
  publication-title: Ind. Eng. Chem. Res.
– volume: 205
  start-page: 610
  year: 2018
  publication-title: Chem. Eng. Commun.
– volume: 2012
  start-page: 9
  year: 2012
  publication-title: J. Nanomater.
– volume: 7
  start-page: 2288
  year: 2017
  publication-title: RSC Adv.
– volume: 54
  start-page: 411
  year: 2015
  publication-title: Rheol. Acta
– volume: 76
  start-page: 484
  year: 2014
  publication-title: Int. J. Heat Mass Transfer
– volume: 140
  start-page: 346
  year: 2007
  publication-title: J. Hazard. Mater.
– volume: 128
  start-page: 588
  year: 2006
  publication-title: J. Heat Transfer
– volume: 127
  start-page: 169
  year: 1994
  publication-title: Chem. Eng. Commun.
– volume: 378
  start-page: 1845
  year: 2014
  publication-title: Phys. Lett. Sect. A Gen. At. Solid State Phys.
– volume: 6
  start-page: 1
  year: 1990
  publication-title: Bioprocess Eng.
– volume: 79
  start-page: 107
  year: 2001
  publication-title: Food Bioprod. Process.
– volume: 197
  start-page: 345
  year: 2019
  publication-title: Chem. Eng. Sci.
– volume: 182
  start-page: 82
  year: 2015
  publication-title: Bioresour. Technol.
– volume: 7
  start-page: 55326
  year: 2017
  publication-title: RSC Adv.
– volume: 8
  start-page: 587
  year: 2018
  publication-title: Appl. Sci.
– volume: 7
  start-page: 1
  year: 2012
  publication-title: Nanoscale Res. Lett.
– volume: 90
  start-page: 1570
  year: 2012
  publication-title: Can. J. Chem. Eng.
– volume: 163
  start-page: 27
  year: 2011
  publication-title: J. Mol. Liq.
– volume: 170
  start-page: 130
  year: 2016
  publication-title: Sep. Purif. Technol.
– volume: 83
  start-page: 377
  year: 2009
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 89
  start-page: 508
  year: 2011
  publication-title: Can. J. Chem. Eng.
– volume: 8
  start-page: 36
  year: 2005
  publication-title: Mater. Today
– volume: 15
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 48
  start-page: 1294
  year: 2009
  publication-title: Int. J. Therm. Sci.
– volume: 408
  start-page: 1745
  year: 2010
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 271
  year: 2012
  publication-title: Asian J. Sci. Res.
– volume: 87
  start-page: 49
  year: 2015
  publication-title: Int. J. Therm. Sci.
– volume: 64
  start-page: 251
  year: 2013
  publication-title: Int. J. Therm. Sci.
– volume: 17
  start-page: 252
  year: 2013
  publication-title: Biorem. J.
– volume: 12
  year: 2017
  publication-title: J. Therm. Sci. Technol.
– volume: 170
  start-page: 400
  year: 2017
  publication-title: Chem. Eng. Sci.
– volume: 55
  start-page: 3447
  year: 2012
  publication-title: Int. J. Heat Mass Transfer
– volume: 27
  start-page: 243
  year: 2010
  publication-title: Braz. J. Chem. Eng.
– volume: 55
  start-page: 4682
  year: 2016
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 151
  year: 2009
  publication-title: Particuology
– volume: 3
  year: 2013
  publication-title: Interface Focus
– volume: 106
  start-page: 34909
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 58
  start-page: 4719
  year: 2003
  publication-title: Chem. Eng. Sci.
– volume: 202
  start-page: 500
  year: 2015
  publication-title: Chem. Eng. Commun.
– volume: 346
  year: 2022
  publication-title: J. Mol. Liq.
– volume: 42
  start-page: 5363
  year: 2003
  publication-title: Ind. Eng. Chem. Res.
– volume: 37
  year: 2021
  publication-title: Biotechnol. Prog.
– volume: 5
  start-page: 75
  year: 2019
  publication-title: Fermentation
– volume: 123
  year: 2020
  publication-title: Int. J. Multiph. Flow
– volume: 202
  start-page: 600
  year: 2015
  publication-title: Chem. Eng. Commun.
– volume: 424
  start-page: 1
  year: 2012
  publication-title: Sci. Total Environ.
– start-page: 19
  year: 2017
– volume: 62
  start-page: 7391
  year: 2007
  publication-title: Chem. Eng. Sci.
– volume: 104
  start-page: 84
  year: 2016
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 90
  start-page: 1098
  year: 2015
  publication-title: Int. J. Heat Mass Transfer
– volume: 242
  start-page: 537
  year: 2017
  publication-title: J. Mol. Liq.
– volume: 66
  start-page: 192
  year: 1988
  publication-title: Can. J. Chem. Eng.
– volume: 89
  start-page: 89
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 264
  year: 1955
  publication-title: AIChE J.
– volume: 86
  start-page: 1310
  year: 2011
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 22
  start-page: 1
  year: 2014
  publication-title: DARU J. Pharm. Sci.
– volume: 105
  start-page: 431
  year: 2015
  publication-title: Procedia Eng.
– volume: 208
  start-page: 1653
  year: 2020
  publication-title: Chem. Eng. Commun.
– volume: 138
  start-page: 389
  year: 2008
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 46
  year: 2015
  publication-title: Trans. Phenom. Nano Micro Scales
– volume: 43
  start-page: 3036
  year: 2008
  publication-title: Sep. Sci. Technol.
– volume: 118
  start-page: 527
  year: 2018
  publication-title: Renewable Energy
– volume: 24
  start-page: 368
  year: 1985
  publication-title: Ind. Eng. Chem. Fundam.
– volume: 88
  start-page: 311
  year: 2019
  publication-title: Int. J. Greenh. Gas Control
– volume: 29
  start-page: 22
  year: 2006
  publication-title: Int. J. Refrig.
– volume: 82
  start-page: 84
  year: 2014
  publication-title: Int. J. Therm. Sci.
– volume: 10
  start-page: 1
  year: 2012
  publication-title: Int. J. Chem. React. Eng.
– volume: 35
  start-page: 1402
  year: 2012
  publication-title: Int. J. Refrig.
– volume: 8
  start-page: 8
  year: 2010
  publication-title: Int. J. Chem. React. Eng.
– volume: 254
  year: 2022
  publication-title: Chem. Eng. Sci.
– volume: 53
  start-page: 6185
  year: 2014
  publication-title: Ind. Eng. Chem. Res.
– volume: 36
  start-page: 66
  year: 2018
  publication-title: Solvent Extr. Ion Exch.
– volume: 46
  start-page: 2295
  year: 2007
  publication-title: Ind. Eng. Chem. Res.
– volume: 42
  start-page: 5384
  year: 2008
  publication-title: Environ. Sci. Technol.
– volume: 63
  start-page: 5120
  year: 2008
  publication-title: Chem. Eng. Sci.
– volume: 50
  start-page: 49
  year: 2016
  publication-title: Int. J. Greenh. Gas Control
– volume: 51
  start-page: 5157
  year: 2012
  publication-title: Ind. Eng. Chem. Res.
– volume: 176
  start-page: 107
  year: 2017
  publication-title: Sep. Purif. Technol.
– volume: 6
  start-page: 419
  year: 2006
  publication-title: Nano Lett.
– volume: 99
  start-page: 67
  year: 2014
  publication-title: Sol. Energy
– volume: 19
  start-page: 345
  year: 2014
  publication-title: Environ. Eng. Res.
– volume: 202
  start-page: 1493
  year: 2015
  publication-title: Chem. Eng. Commun.
– volume: 92
  start-page: 2313
  year: 2014
  publication-title: Chem. Eng. Res. Des.
– volume: 1
  start-page: 24
  year: 2013
  publication-title: Am. J. Chem. Eng.
– volume: 53
  start-page: 16851
  year: 2014
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  year: 2017
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
– volume: 56
  start-page: 235
  year: 2014
  publication-title: Indian Chem. Eng.
– volume: 117
  start-page: 126
  year: 1991
  publication-title: J. Environ. Eng.
– volume: 21
  start-page: 983
  year: 2013
  publication-title: Chin. J. Chem. Eng.
– volume: 40
  start-page: 4502
  year: 2015
  publication-title: Int. J. Hydrogen Energy
– volume: 145
  start-page: 233
  year: 2016
  publication-title: Chem. Eng. Sci.
– volume: 23
  start-page: 38
  year: 2017
  publication-title: S. Afr. J. Chem. Eng.
– volume: 7
  year: 2019
  publication-title: J. Environ. Chem. Eng.
– volume: 9
  start-page: 541
  year: 2013
  publication-title: Brazilian J. Chem
– volume: 20
  year: 2009
  publication-title: Nanotechnology
– volume: 7
  start-page: 8908
  year: 2017
  publication-title: RSC Adv.
– volume: 44
  start-page: 815
  year: 2010
  publication-title: Water Res.
– volume: 2
  start-page: 266
  year: 2013
  publication-title: Adv. Nanoparticles
– volume: 68
  start-page: 952
  year: 1990
  publication-title: Can. J. Chem. Eng.
– volume: 27
  start-page: 153
  year: 2009
  publication-title: Biotechnol. Adv.
– volume: 23
  start-page: 20055
  year: 2016
  publication-title: Environ. Sci. Pollut. Res.
– volume: 5
  start-page: 446
  year: 1959
  publication-title: AIChE J.
SSID ssj0002041
Score 2.4170759
Snippet Volumetric oxygen mass transfer coefficient (kLa) is an important parameter in the design of various reactors and bioreactors. In the present work, the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 2608
SubjectTerms Bioreactors
Critical loading
Design parameters
Dimensionless analysis
enhancement factor
Fluid dynamics
Fluid flow
Gas flow
Mass transfer
Multiple regression analysis
Nanofluids
Nanoparticles
Oxygen
Plate columns
pulsed plate column
pulsing velocity
Regression models
Reynolds number
Schmidt number
Titanium dioxide
α‐Fe2O3 nanofluid
Title Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.25207
https://www.proquest.com/docview/3065074315
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA06K134Fh-jZOFKpk6bvlJwI2OHwYUKKrgraR4wommxU9Cdf6C_4o_4EX6JN-m8XIq7vAol95GTS-65CB0JNxA8FLHDFYmcAO4QDgOn6LDYFLHzVJzbeMfgJr68p-epock5neTCNPwQ04CbsQzrr42Bs7zqzkhD-QOXJyQkNpUcrgk2f8O_nrph4gbjcnkULkl-MOUmJd3Zp79w5Tw6tcdLf_V_P7aGVsawEp81erCOFqTeQMtzZIOb6D2dI_PHwxm_RqE72BbEMZnpHcy0wJaQExcKPzHzuqgWEoYb9hIzWry8gt7BZFXhkUW-sHqocVnDQStw-QgAFnPj9zQ2gV789fn99tGX5MrHmulCPdZDsYXu-ultb-CMyzE4JRh97EQuFYLnUjIpwcx96AM8UmFClBtKwiQgGwJnnUeFm7CYebErI05FQhOQeK78bdTShZY7CEdunntJ7nPGBMiGJZwSxShoB4WWF-6i9kQs2dimqszUuLeAB6aPrQCysmHkyBruZZKZrc_s1me9i15qW3t_WbyPlgigluY9bhu1Rs-1PECLlagPrXb9ACF71Nw
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JTsMwFLWgLIAFM2Io4AUr1EDiTM6CBSqtCpSCRJHYRY7tSEXFqWgjwY4bwFW4CIfgJHw7nVgidp4iRf6Dn7_830foUNie4L4ILZ6SwPLgDmExcIoWC3UROycNExPvaNyFrQd6XtM0OaejXJiCH2IccNOWYfy1NnAdkD6ZsIbyRy6PiU90LvmcF4Am6gwO93bsiIntDQvmUbgmud6YnZScTL79hSyn8ak5YOrL__y1FbQ0RJb4rFCFVTQj1RpanOIbXEfvtSk-f9yZUGxkqoJNTRydnF7BTAlsODlxluInph8Y5ULCcEFgokezl1dQPZjs9_HAgF9Y3VG4l8NZK3CvCxgWc-36FNaxXvz1-f32UZfkxsWKqSzt5h2xge7rtXa1YQ0rMlg9sPvQCmwqBE-kZFKCpbvQB4SU-hFJbV8SJgHcEDjuHCrsiIXMCW0ZcCoiGoHQk9TdRCWVKbmFcGAniRMlLmdMgHBYxClJGQUFodBy_G1UHsklHppVP9Zl7g3mgekjI4G4V5ByxAX9Mon11sdm6-PqZbVmWjt_WXyA5hvt62bcvGhd7aIFAiCmeJ5bRqXBcy730Gxf5PtG1X4AlbPZBA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsQwGA4uIHpwF3dz8CRTp03baQpeZBbGBR1QwVtJs8DImBbHgt58A30VX8SH8En8k87mUbxlK5T8S7785P9-hA6FGwgeisjhitScAO4QDgOn6LDIFLHzVJTaeEf7Jrq6p42mock5GebClPwQo4CbsQzrr42B50JVx6Sh_IHLYxISk0o-GwAON8z5vt8Z-WHiBoN6eRRuSX4wIicl1fG3v4DlJDy150tr6X9_towWB7gSn5aKsIKmpF5FCxNsg2vovTnB5o-7Y4KNTFewrYhjUtMrmGmBLSMnzhR-ZOZ5USEkDJf0JWY0e3kFxYPJfh8_W-gLq7sa5wWctALnPUCwmBvHp7GJ9OKvz--3j5Yk1z7WTGeqV3TFOrprNW_rbWdQj8HJweojp-ZSIXgqJZMS7NyHPuAjFcZEuaEkTAK0IXDYeVS4MYuYF7myxqmIaQwiT5W_gWZ0puUmwjU3Tb049TljAmTDYk6JYhTUg0LLC7fQ7lAsycCo-okpcm8RD0wfWQEkeUnJkZTkyyQxW5_YrU_q5_WmbW3_ZfEBmus0Wsnl2dXFDpongGDKt7m7aOb5qZB7aLovin2raD8dHNeq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation%2C+modelling%2C+and+order+of+magnitude+analysis+of+oxygen+mass+transfer+in+pulsed+plate+column+with+%CE%B1%E2%80%90Fe2O3+nanofluid&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Shet%2C+Amruta+S.&rft.au=Shetty+K.%2C+Vidya&rft.date=2024-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=102&rft.issue=7&rft.spage=2608&rft.epage=2627&rft_id=info:doi/10.1002%2Fcjce.25207&rft.externalDBID=10.1002%252Fcjce.25207&rft.externalDocID=CJCE25207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon