Solving the problem with stannous fluoride: Formulation, stabilization, and antimicrobial action
Stannous fluoride (SnF ) is a compound present in many commercially available dentifrices; however, oxidative decomposition negatively impacts its efficacy. Stannous oxidation is often mitigated through the addition of complexing agents or sources of sacrificial stannous compounds. The authors have...
Saved in:
Published in: | The Journal of the American Dental Association (1939) Vol. 150; no. 4S; pp. S5 - S13 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-04-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stannous fluoride (SnF
) is a compound present in many commercially available dentifrices; however, oxidative decomposition negatively impacts its efficacy. Stannous oxidation is often mitigated through the addition of complexing agents or sources of sacrificial stannous compounds. The authors have found that the addition of zinc phosphate significantly improved stannous stability more effectively than other stabilization methods. The authors evaluated the chemical speciation of stannous compounds within a variety of formulations using x-ray absorption near edge spectroscopy (XANES), a technique never used before in this manner. These data were compared and correlated with several antimicrobial experiments.
XANES data of various commercially available compounds and Colgate Total
were performed and analyzed against a library of reference compounds to determine the tin chemical speciation. The antibacterial assays used were salivary adenosine triphosphate, short-interval kill test, plaque glycolysis, and anaerobic biofilm models.
XANES spectra showed a diverse distribution of tin species and varying degrees of SnF
oxidation. In vitro antimicrobial assessment indicated significant differences in performance, which may be correlated to the differences in tin speciation and oxidation state.
Driven by the excipient ingredients, SnF
dentifrices contain a distribution of tin species in either the SnF
or Sn(IV) oxidation state. The addition of zinc phosphate provided significant robustness against oxidation, which directly translated to greater efficacy against bacteria.
The choice of inactive ingredients in a dentifrice with active SnF
can dramatically impact product stability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1943-4723 |
DOI: | 10.1016/j.adaj.2019.01.004 |