Attractors in k-Dimensional Discrete Systems of Mixed Monotonicity

We consider k -dimensional discrete-time systems of the form x n + 1 = F ( x n , … , x n - k + 1 ) in which the map F is continuous and monotonic in each one of its arguments. We define a partial order on R + 2 k , compatible with the monotonicity of F , and then use it to embed the k -dimensional s...

Full description

Saved in:
Bibliographic Details
Published in:Qualitative theory of dynamical systems Vol. 23; no. Suppl 1
Main Authors: AlSharawi, Ziyad, Cánovas, Jose S., Kallel, Sadok
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider k -dimensional discrete-time systems of the form x n + 1 = F ( x n , … , x n - k + 1 ) in which the map F is continuous and monotonic in each one of its arguments. We define a partial order on R + 2 k , compatible with the monotonicity of F , and then use it to embed the k -dimensional system into a 2 k -dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest.
AbstractList We consider k -dimensional discrete-time systems of the form x n + 1 = F ( x n , … , x n - k + 1 ) in which the map F is continuous and monotonic in each one of its arguments. We define a partial order on R + 2 k , compatible with the monotonicity of F , and then use it to embed the k -dimensional system into a 2 k -dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest.
We consider k-dimensional discrete-time systems of the form xn+1=F(xn,…,xn-k+1) in which the map F is continuous and monotonic in each one of its arguments. We define a partial order on R+2k, compatible with the monotonicity of F, and then use it to embed the k-dimensional system into a 2k-dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest.
Author AlSharawi, Ziyad
Kallel, Sadok
Cánovas, Jose S.
Author_xml – sequence: 1
  givenname: Ziyad
  surname: AlSharawi
  fullname: AlSharawi, Ziyad
  email: zsharawi@aus.edu
  organization: Universidad Politécnica de Cartagena, American University of Sharjah
– sequence: 2
  givenname: Jose S.
  surname: Cánovas
  fullname: Cánovas, Jose S.
  organization: Universidad Politécnica de Cartagena
– sequence: 3
  givenname: Sadok
  surname: Kallel
  fullname: Kallel, Sadok
  organization: American University of Sharjah
BookMark eNpFkEtLAzEUhYNUsK3-AVcB19G8JpNZ1tYXtLhQ1yGTuSOpbVKTFOy_d7SCq3MWH_cevgkahRgAoUtGrxml9U1mXEhFKJeEsqETfYLGTClORNXw0dCruiKVVPQMTXJeU6p4LfgY3c5KSdaVmDL2AX-Qhd9CyD4Gu8ELn12CAvjlkAtsM449Xvkv6PAqhlhi8M6Xwzk67e0mw8VfTtHb_d3r_JEsnx-e5rMl2Q3PC6kbx3XXO9pTrbjqXW_bTregHFjJpdWiBsYZaMuZlG2neEM74FTXQjUguZiiq-PdXYqfe8jFrOM-DTuzEbSpWMWYlgMljlTeJR_eIf1TjJofWeYoywyyzK8so8U3j1deRg
Cites_doi 10.1139/f54-039
10.1007/s00285-006-0004-3
10.1016/j.chaos.2022.111933
10.1137/20M1363285
10.1080/10236190802332126
10.1007/s12346-021-00455-z
10.1007/BF00284162
10.1080/1023619031000115377
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DOI 10.1007/s12346-024-01123-8
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1662-3592
ExternalDocumentID 10_1007_s12346_024_01123_8
GrantInformation_xml – fundername: American University of Sharjah
  funderid: http://dx.doi.org/10.13039/501100002724
– fundername: Universidad Politécnica de Cartagena
  funderid: http://dx.doi.org/10.13039/501100005741
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3J0
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DC1
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
ID FETCH-LOGICAL-p157t-79c28dfc0f08626fcfabd8be6cea424a837e121e8a2144bd6290de2087369e423
IEDL.DBID AEJHL
ISSN 1575-5460
IngestDate Thu Oct 10 22:01:21 EDT 2024
Wed Aug 21 03:26:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords 39A30
Rational difference equations
Ricker model
Global stability
Periodic solutions
37N25
Embedding
39A60
Local stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p157t-79c28dfc0f08626fcfabd8be6cea424a837e121e8a2144bd6290de2087369e423
PQID 3095151184
PQPubID 2044188
ParticipantIDs proquest_journals_3095151184
springer_journals_10_1007_s12346_024_01123_8
PublicationCentury 2000
PublicationDate 11-2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 11-2024
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Qualitative theory of dynamical systems
PublicationTitleAbbrev Qual. Theory Dyn. Syst
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Luís (CR15) 2021; 20
Collatz (CR7) 1964
Smith (CR3) 2008; 14
Kulenović, Merino (CR9) 2006; 6
Krause, Pituk (CR10) 2004; 10
CR5
Al-Salman, AlSharawi, Kallel (CR11) 2020; 25
Ricker (CR13) 1954; 11
Gouzé, Hadeler (CR1) 1994; 1
Smith (CR2) 2006; 53
El-Morshedy, Ruiz-Herrera (CR8) 2021; 81
Kulenović, Merino (CR12) 2006; 6
Kocić, Ladas (CR17) 1993
Camouzis, Ladas (CR16) 2008
Schröder (CR6) 1959; 3
Kulenović, Ladas (CR18) 2002
Jury (CR14) 1963; 1
AlSharawi (CR4) 2022; 157
References_xml – volume: 25
  start-page: 4257
  issue: 11
  year: 2020
  end-page: 4276
  ident: CR11
  article-title: Extension, embedding and global stability in two dimensional monotone maps
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  contributor:
    fullname: Kallel
– volume: 11
  start-page: 559
  issue: 5
  year: 1954
  end-page: 623
  ident: CR13
  article-title: Stock and recruitment
  publication-title: J. Fish. Res. Board Can.
  doi: 10.1139/f54-039
  contributor:
    fullname: Ricker
– volume: 53
  start-page: 747
  issue: 4
  year: 2006
  end-page: 758
  ident: CR2
  article-title: The discrete dynamics of monotonically decomposable maps
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-006-0004-3
  contributor:
    fullname: Smith
– volume: 157
  start-page: 111933
  issue: 10
  year: 2022
  ident: CR4
  article-title: Embedding and global stability in periodic 2-dimensional maps of mixed monotonicity
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2022.111933
  contributor:
    fullname: AlSharawi
– volume: 81
  start-page: 1781
  issue: 4
  year: 2021
  end-page: 1798
  ident: CR8
  article-title: Asymptotic convergence in delay differential equations arising in epidemiology and physiology
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/20M1363285
  contributor:
    fullname: Ruiz-Herrera
– year: 1964
  ident: CR7
  publication-title: Funktionalanalysis und numerische Mathematik, volume Band 120 of Die Grundlehren der mathematischen Wissenschaften
  contributor:
    fullname: Collatz
– volume: 14
  start-page: 1159
  issue: 10–11
  year: 2008
  end-page: 1164
  ident: CR3
  article-title: Global stability for mixed monotone systems
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236190802332126
  contributor:
    fullname: Smith
– year: 1993
  ident: CR17
  publication-title: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Mathematics and its Applications
  contributor:
    fullname: Ladas
– volume: 6
  start-page: 97
  issue: 1
  year: 2006
  end-page: 110
  ident: CR9
  article-title: A global attractivity result for maps with invariant boxes
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  contributor:
    fullname: Merino
– volume: 1
  start-page: 23
  issue: 1
  year: 1994
  end-page: 34
  ident: CR1
  article-title: Monotone flows and order intervals
  publication-title: Nonlinear World
  contributor:
    fullname: Hadeler
– volume: 20
  start-page: 20
  issue: 1
  year: 2021
  ident: CR15
  article-title: Linear stability conditions for a first order -dimensional mapping
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/s12346-021-00455-z
  contributor:
    fullname: Luís
– year: 2002
  ident: CR18
  publication-title: Dynamics of Second Order Rational Difference Equations
  contributor:
    fullname: Ladas
– volume: 1
  start-page: 142
  issue: 2
  year: 1963
  end-page: 153
  ident: CR14
  article-title: On the roots of a real polynomial inside the unit circle and a stability criterion for linear discrete systems
  publication-title: IFAC Proc.
  contributor:
    fullname: Jury
– volume: 6
  start-page: 97
  issue: 1
  year: 2006
  end-page: 110
  ident: CR12
  article-title: A global attractivity result for maps with invariant boxes
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  contributor:
    fullname: Merino
– ident: CR5
– volume: 3
  start-page: 28
  year: 1959
  end-page: 44
  ident: CR6
  article-title: Fehlerabschätzung bei linearen Gleichungssystemen mit dem Brouwerschen Fixpunktsatz
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00284162
  contributor:
    fullname: Schröder
– volume: 10
  start-page: 343
  issue: 4
  year: 2004
  end-page: 356
  ident: CR10
  article-title: Boundedness and stability for higher order difference equations
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/1023619031000115377
  contributor:
    fullname: Pituk
– year: 2008
  ident: CR16
  publication-title: Dynamics of Third-order Rational Difference Equations with Open Problems and Conjectures. Advances in Discrete Mathematics and Applications
  contributor:
    fullname: Ladas
SSID ssj0062732
Score 2.3287544
Snippet We consider k -dimensional discrete-time systems of the form x n + 1 = F ( x n , … , x n - k + 1 ) in which the map F is continuous and monotonic in each one...
We consider k-dimensional discrete-time systems of the form xn+1=F(xn,…,xn-k+1) in which the map F is continuous and monotonic in each one of its arguments. We...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
SubjectTerms Difference and Functional Equations
Difference equations
Dimensional stability
Discrete systems
Discrete time systems
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Title Attractors in k-Dimensional Discrete Systems of Mixed Monotonicity
URI https://link.springer.com/article/10.1007/s12346-024-01123-8
https://www.proquest.com/docview/3095151184
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-6XfTgtzidkoNHI_1I0uQ43eYU58UJ3krSJDAGnWwd-Of70o8NxYtCoYWG0v6a997v5SW_IHTNDY9CrgPiMskI1RRMKoZkRehEKWDMxjg_pjt6TV7eRX_gZXLi9dBFPrttKpKlo96sdYti6ufL-kkTcE3ENmpD7GHQudu9wdPouXHAHCJyWeQEJkIY5UG9Vub3p3xjlj-KoWWMGe7_6-0O0F5NKXGv6gOHaMvmR2h3vNZjXR6ju15RLKqddfA0xzPS96L-lSAH7k_BdQB3xrV6OZ47PJ5-WoPB4OeF184Fqn6C3oaDyf2I1LsnkA_48oIkMouEcVngyqzFZU5pI7TlmVU0ogoyUxtGoRXKq6Zp-GcyMDYKRBJzaYFlnaJWPs_tGcIUkGShkC6DphnVKqGMxUwqJgWTWnVQt8EwrU1gmcaevPn8hXbQTQPa5vZGLtkjlwJyaYlcKs7_1vwC7UQV7nB0UatYrOwl2l6a1VXdMfz5cfIw_AIX5bMF
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH647aAe_C1Op-bg0UCXpm1ynHZj4raLE7ZTSdoUhtDJ1oF_vi_94VC8KPRQaCjtl7yX7-XlfQG48xOfdX3t0DSWHuWao0m5GKwIHSiFjDlJUrumO3wJJjMR9q1MDq9rYYrd7nVKsvDU22I35nK7YdbumsB7KhrQsmrnrAmt3mw-D2sP7OOUXGQ5kYpQj_tOVSzz-1u-Ucsf2dBikhkc_u_zjuCgIpWkV46CY9gx2Qnsj78UWden8NDL81V5tg5ZZOSNhlbWv5TkIOECnQeyZ1Lpl5NlSsaLD5MQNPllbtVzkayfweugP30c0ur8BPqOv57TQMZMJGnspEXcksap0onQxo-N4owrjE1Nl3WNUFY3TWOvSScxzBGB60uDPOscmtkyMxdAOELpdYVMY2wac60C7nmuJ5UnhSe1akOnBjGqjGAduZa-2QiGt-G-Bm37eCuYbJGLELmoQC4Sl39rfgu7w-l4FI2eJs9XsMfKPsCrA818tTHX0Fgnm5tqlHwCkKC1qQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBqIP3sXp1Dz4aFgvaZs-Tre6oRuCE3wraZPAELqxdeDP96SXDcUXEfpQaAjlS3LynZxzvgDc-tJ3bD-xqE5Dj7KE4ZJy0VnhSSAEMmYptTnTHbwG43fe6xuZnHUVf5HtXocky5oGo9KU5Z251J1N4ZvjMpM8azIo8J3ybWiaYzHWgGZ3OHmMamvs4_ZcRDyRllCP-VZVOPN7L99o5o_IaLHhRAf__9VD2K_IJumWs-MItlR2DHujtVLr8gTuu3m-KO_cIdOMfNCekfsvpTpIb4pGBVk1qXTNyUyT0fRTSYKmYJYbVV0k8afwFvUnDwNa3atA5whDToMwdbjUqaULf0anWiSSJ8pPlWAOE-izKtuxFRdGTy3B0QwtqRyLB64fKuRfZ9DIZpk6B8IQVs_moU6xacoSETDPc71QeCH3wkS0oF0DGleLYxm7htYZz4a14K4GcPN5I6RskIsRubhALuYXf2t-AzsvvSh-Ho6fLmHXKYcAnzY08sVKXcH2Uq6uqwnzBTJzvkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attractors+in+k-Dimensional+Discrete+Systems+of+Mixed+Monotonicity&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=AlSharawi%2C+Ziyad&rft.au=C%C3%A1novas%2C+Jose+S.&rft.au=Kallel%2C+Sadok&rft.date=2024-01-01&rft.pub=Springer+International+Publishing&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=23&rft.issue=Suppl+1&rft_id=info:doi/10.1007%2Fs12346-024-01123-8&rft.externalDocID=10_1007_s12346_024_01123_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon