Attractors in k-Dimensional Discrete Systems of Mixed Monotonicity
We consider k -dimensional discrete-time systems of the form x n + 1 = F ( x n , … , x n - k + 1 ) in which the map F is continuous and monotonic in each one of its arguments. We define a partial order on R + 2 k , compatible with the monotonicity of F , and then use it to embed the k -dimensional s...
Saved in:
Published in: | Qualitative theory of dynamical systems Vol. 23; no. Suppl 1 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We consider
k
-dimensional discrete-time systems of the form
x
n
+
1
=
F
(
x
n
,
…
,
x
n
-
k
+
1
)
in which the map
F
is continuous and monotonic in each one of its arguments. We define a partial order on
R
+
2
k
, compatible with the monotonicity of
F
, and then use it to embed the
k
-dimensional system into a 2
k
-dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest. |
---|---|
AbstractList | We consider
k
-dimensional discrete-time systems of the form
x
n
+
1
=
F
(
x
n
,
…
,
x
n
-
k
+
1
)
in which the map
F
is continuous and monotonic in each one of its arguments. We define a partial order on
R
+
2
k
, compatible with the monotonicity of
F
, and then use it to embed the
k
-dimensional system into a 2
k
-dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest. We consider k-dimensional discrete-time systems of the form xn+1=F(xn,…,xn-k+1) in which the map F is continuous and monotonic in each one of its arguments. We define a partial order on R+2k, compatible with the monotonicity of F, and then use it to embed the k-dimensional system into a 2k-dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest. |
Author | AlSharawi, Ziyad Kallel, Sadok Cánovas, Jose S. |
Author_xml | – sequence: 1 givenname: Ziyad surname: AlSharawi fullname: AlSharawi, Ziyad email: zsharawi@aus.edu organization: Universidad Politécnica de Cartagena, American University of Sharjah – sequence: 2 givenname: Jose S. surname: Cánovas fullname: Cánovas, Jose S. organization: Universidad Politécnica de Cartagena – sequence: 3 givenname: Sadok surname: Kallel fullname: Kallel, Sadok organization: American University of Sharjah |
BookMark | eNpFkEtLAzEUhYNUsK3-AVcB19G8JpNZ1tYXtLhQ1yGTuSOpbVKTFOy_d7SCq3MWH_cevgkahRgAoUtGrxml9U1mXEhFKJeEsqETfYLGTClORNXw0dCruiKVVPQMTXJeU6p4LfgY3c5KSdaVmDL2AX-Qhd9CyD4Gu8ELn12CAvjlkAtsM449Xvkv6PAqhlhi8M6Xwzk67e0mw8VfTtHb_d3r_JEsnx-e5rMl2Q3PC6kbx3XXO9pTrbjqXW_bTregHFjJpdWiBsYZaMuZlG2neEM74FTXQjUguZiiq-PdXYqfe8jFrOM-DTuzEbSpWMWYlgMljlTeJR_eIf1TjJofWeYoywyyzK8so8U3j1deRg |
Cites_doi | 10.1139/f54-039 10.1007/s00285-006-0004-3 10.1016/j.chaos.2022.111933 10.1137/20M1363285 10.1080/10236190802332126 10.1007/s12346-021-00455-z 10.1007/BF00284162 10.1080/1023619031000115377 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DOI | 10.1007/s12346-024-01123-8 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1662-3592 |
ExternalDocumentID | 10_1007_s12346_024_01123_8 |
GrantInformation_xml | – fundername: American University of Sharjah funderid: http://dx.doi.org/10.13039/501100002724 – fundername: Universidad Politécnica de Cartagena funderid: http://dx.doi.org/10.13039/501100005741 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 203 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3J0 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACSNA ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DC1 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z J9A JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 |
ID | FETCH-LOGICAL-p157t-79c28dfc0f08626fcfabd8be6cea424a837e121e8a2144bd6290de2087369e423 |
IEDL.DBID | AEJHL |
ISSN | 1575-5460 |
IngestDate | Thu Oct 10 22:01:21 EDT 2024 Wed Aug 21 03:26:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 1 |
Keywords | 39A30 Rational difference equations Ricker model Global stability Periodic solutions 37N25 Embedding 39A60 Local stability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p157t-79c28dfc0f08626fcfabd8be6cea424a837e121e8a2144bd6290de2087369e423 |
PQID | 3095151184 |
PQPubID | 2044188 |
ParticipantIDs | proquest_journals_3095151184 springer_journals_10_1007_s12346_024_01123_8 |
PublicationCentury | 2000 |
PublicationDate | 11-2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 11-2024 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Qualitative theory of dynamical systems |
PublicationTitleAbbrev | Qual. Theory Dyn. Syst |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Luís (CR15) 2021; 20 Collatz (CR7) 1964 Smith (CR3) 2008; 14 Kulenović, Merino (CR9) 2006; 6 Krause, Pituk (CR10) 2004; 10 CR5 Al-Salman, AlSharawi, Kallel (CR11) 2020; 25 Ricker (CR13) 1954; 11 Gouzé, Hadeler (CR1) 1994; 1 Smith (CR2) 2006; 53 El-Morshedy, Ruiz-Herrera (CR8) 2021; 81 Kulenović, Merino (CR12) 2006; 6 Kocić, Ladas (CR17) 1993 Camouzis, Ladas (CR16) 2008 Schröder (CR6) 1959; 3 Kulenović, Ladas (CR18) 2002 Jury (CR14) 1963; 1 AlSharawi (CR4) 2022; 157 |
References_xml | – volume: 25 start-page: 4257 issue: 11 year: 2020 end-page: 4276 ident: CR11 article-title: Extension, embedding and global stability in two dimensional monotone maps publication-title: Discrete Contin. Dyn. Syst. Ser. B contributor: fullname: Kallel – volume: 11 start-page: 559 issue: 5 year: 1954 end-page: 623 ident: CR13 article-title: Stock and recruitment publication-title: J. Fish. Res. Board Can. doi: 10.1139/f54-039 contributor: fullname: Ricker – volume: 53 start-page: 747 issue: 4 year: 2006 end-page: 758 ident: CR2 article-title: The discrete dynamics of monotonically decomposable maps publication-title: J. Math. Biol. doi: 10.1007/s00285-006-0004-3 contributor: fullname: Smith – volume: 157 start-page: 111933 issue: 10 year: 2022 ident: CR4 article-title: Embedding and global stability in periodic 2-dimensional maps of mixed monotonicity publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2022.111933 contributor: fullname: AlSharawi – volume: 81 start-page: 1781 issue: 4 year: 2021 end-page: 1798 ident: CR8 article-title: Asymptotic convergence in delay differential equations arising in epidemiology and physiology publication-title: SIAM J. Appl. Math. doi: 10.1137/20M1363285 contributor: fullname: Ruiz-Herrera – year: 1964 ident: CR7 publication-title: Funktionalanalysis und numerische Mathematik, volume Band 120 of Die Grundlehren der mathematischen Wissenschaften contributor: fullname: Collatz – volume: 14 start-page: 1159 issue: 10–11 year: 2008 end-page: 1164 ident: CR3 article-title: Global stability for mixed monotone systems publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236190802332126 contributor: fullname: Smith – year: 1993 ident: CR17 publication-title: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Mathematics and its Applications contributor: fullname: Ladas – volume: 6 start-page: 97 issue: 1 year: 2006 end-page: 110 ident: CR9 article-title: A global attractivity result for maps with invariant boxes publication-title: Discrete Contin. Dyn. Syst. Ser. B contributor: fullname: Merino – volume: 1 start-page: 23 issue: 1 year: 1994 end-page: 34 ident: CR1 article-title: Monotone flows and order intervals publication-title: Nonlinear World contributor: fullname: Hadeler – volume: 20 start-page: 20 issue: 1 year: 2021 ident: CR15 article-title: Linear stability conditions for a first order -dimensional mapping publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/s12346-021-00455-z contributor: fullname: Luís – year: 2002 ident: CR18 publication-title: Dynamics of Second Order Rational Difference Equations contributor: fullname: Ladas – volume: 1 start-page: 142 issue: 2 year: 1963 end-page: 153 ident: CR14 article-title: On the roots of a real polynomial inside the unit circle and a stability criterion for linear discrete systems publication-title: IFAC Proc. contributor: fullname: Jury – volume: 6 start-page: 97 issue: 1 year: 2006 end-page: 110 ident: CR12 article-title: A global attractivity result for maps with invariant boxes publication-title: Discrete Contin. Dyn. Syst. Ser. B contributor: fullname: Merino – ident: CR5 – volume: 3 start-page: 28 year: 1959 end-page: 44 ident: CR6 article-title: Fehlerabschätzung bei linearen Gleichungssystemen mit dem Brouwerschen Fixpunktsatz publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00284162 contributor: fullname: Schröder – volume: 10 start-page: 343 issue: 4 year: 2004 end-page: 356 ident: CR10 article-title: Boundedness and stability for higher order difference equations publication-title: J. Differ. Equ. Appl. doi: 10.1080/1023619031000115377 contributor: fullname: Pituk – year: 2008 ident: CR16 publication-title: Dynamics of Third-order Rational Difference Equations with Open Problems and Conjectures. Advances in Discrete Mathematics and Applications contributor: fullname: Ladas |
SSID | ssj0062732 |
Score | 2.3287544 |
Snippet | We consider
k
-dimensional discrete-time systems of the form
x
n
+
1
=
F
(
x
n
,
…
,
x
n
-
k
+
1
)
in which the map
F
is continuous and monotonic in each one... We consider k-dimensional discrete-time systems of the form xn+1=F(xn,…,xn-k+1) in which the map F is continuous and monotonic in each one of its arguments. We... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
SubjectTerms | Difference and Functional Equations Difference equations Dimensional stability Discrete systems Discrete time systems Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics |
Title | Attractors in k-Dimensional Discrete Systems of Mixed Monotonicity |
URI | https://link.springer.com/article/10.1007/s12346-024-01123-8 https://www.proquest.com/docview/3095151184 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-6XfTgtzidkoNHI_1I0uQ43eYU58UJ3krSJDAGnWwd-Of70o8NxYtCoYWG0v6a997v5SW_IHTNDY9CrgPiMskI1RRMKoZkRehEKWDMxjg_pjt6TV7eRX_gZXLi9dBFPrttKpKlo96sdYti6ufL-kkTcE3ENmpD7GHQudu9wdPouXHAHCJyWeQEJkIY5UG9Vub3p3xjlj-KoWWMGe7_6-0O0F5NKXGv6gOHaMvmR2h3vNZjXR6ju15RLKqddfA0xzPS96L-lSAH7k_BdQB3xrV6OZ47PJ5-WoPB4OeF184Fqn6C3oaDyf2I1LsnkA_48oIkMouEcVngyqzFZU5pI7TlmVU0ogoyUxtGoRXKq6Zp-GcyMDYKRBJzaYFlnaJWPs_tGcIUkGShkC6DphnVKqGMxUwqJgWTWnVQt8EwrU1gmcaevPn8hXbQTQPa5vZGLtkjlwJyaYlcKs7_1vwC7UQV7nB0UatYrOwl2l6a1VXdMfz5cfIw_AIX5bMF |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH647aAe_C1Op-bg0UCXpm1ynHZj4raLE7ZTSdoUhtDJ1oF_vi_94VC8KPRQaCjtl7yX7-XlfQG48xOfdX3t0DSWHuWao0m5GKwIHSiFjDlJUrumO3wJJjMR9q1MDq9rYYrd7nVKsvDU22I35nK7YdbumsB7KhrQsmrnrAmt3mw-D2sP7OOUXGQ5kYpQj_tOVSzz-1u-Ucsf2dBikhkc_u_zjuCgIpWkV46CY9gx2Qnsj78UWden8NDL81V5tg5ZZOSNhlbWv5TkIOECnQeyZ1Lpl5NlSsaLD5MQNPllbtVzkayfweugP30c0ur8BPqOv57TQMZMJGnspEXcksap0onQxo-N4owrjE1Nl3WNUFY3TWOvSScxzBGB60uDPOscmtkyMxdAOELpdYVMY2wac60C7nmuJ5UnhSe1akOnBjGqjGAduZa-2QiGt-G-Bm37eCuYbJGLELmoQC4Sl39rfgu7w-l4FI2eJs9XsMfKPsCrA818tTHX0Fgnm5tqlHwCkKC1qQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBqIP3sXp1Dz4aFgvaZs-Tre6oRuCE3wraZPAELqxdeDP96SXDcUXEfpQaAjlS3LynZxzvgDc-tJ3bD-xqE5Dj7KE4ZJy0VnhSSAEMmYptTnTHbwG43fe6xuZnHUVf5HtXocky5oGo9KU5Z251J1N4ZvjMpM8azIo8J3ybWiaYzHWgGZ3OHmMamvs4_ZcRDyRllCP-VZVOPN7L99o5o_IaLHhRAf__9VD2K_IJumWs-MItlR2DHujtVLr8gTuu3m-KO_cIdOMfNCekfsvpTpIb4pGBVk1qXTNyUyT0fRTSYKmYJYbVV0k8afwFvUnDwNa3atA5whDToMwdbjUqaULf0anWiSSJ8pPlWAOE-izKtuxFRdGTy3B0QwtqRyLB64fKuRfZ9DIZpk6B8IQVs_moU6xacoSETDPc71QeCH3wkS0oF0DGleLYxm7htYZz4a14K4GcPN5I6RskIsRubhALuYXf2t-AzsvvSh-Ho6fLmHXKYcAnzY08sVKXcH2Uq6uqwnzBTJzvkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attractors+in+k-Dimensional+Discrete+Systems+of+Mixed+Monotonicity&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=AlSharawi%2C+Ziyad&rft.au=C%C3%A1novas%2C+Jose+S.&rft.au=Kallel%2C+Sadok&rft.date=2024-01-01&rft.pub=Springer+International+Publishing&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=23&rft.issue=Suppl+1&rft_id=info:doi/10.1007%2Fs12346-024-01123-8&rft.externalDocID=10_1007_s12346_024_01123_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon |