Using Artificial Neural Networks to Search for the Production of the Higgs Boson Together with a Single Top Quark

The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that makes it possible to construct a neural network with an optimal set of parameters has been developed. Using Monte Carlo simulation, the signific...

Full description

Saved in:
Bibliographic Details
Published in:Physics of particles and nuclei letters Vol. 21; no. 3; pp. 481 - 488
Main Authors: Boiko, I. R., Guseinov, N. A., Eletskikh, I. V., Didenko, A. R., Dolovova, O. A., Tropina, A. D.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that makes it possible to construct a neural network with an optimal set of parameters has been developed. Using Monte Carlo simulation, the significance of signal separation from the background is assessed. The use of neural networks significantly increases the signal significance and makes it possible to detect the process based on the data from completed sessions of the Large Hadron Collider.
AbstractList The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that makes it possible to construct a neural network with an optimal set of parameters has been developed. Using Monte Carlo simulation, the significance of signal separation from the background is assessed. The use of neural networks significantly increases the signal significance and makes it possible to detect the process based on the data from completed sessions of the Large Hadron Collider.
The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that makes it possible to construct a neural network with an optimal set of parameters has been developed. Using Monte Carlo simulation, the significance of signal separation from the background is assessed. The use of neural networks significantly increases the signal significance and makes it possible to detect the process based on the data from completed sessions of the Large Hadron Collider.
Author Boiko, I. R.
Dolovova, O. A.
Guseinov, N. A.
Eletskikh, I. V.
Didenko, A. R.
Tropina, A. D.
Author_xml – sequence: 1
  givenname: I. R.
  surname: Boiko
  fullname: Boiko, I. R.
  email: boyko@jinr.ru
  organization: Joint Institute for Nuclear Reseach
– sequence: 2
  givenname: N. A.
  surname: Guseinov
  fullname: Guseinov, N. A.
  email: nguseynov@jinr.ru
  organization: Joint Institute for Nuclear Reseach
– sequence: 3
  givenname: I. V.
  surname: Eletskikh
  fullname: Eletskikh, I. V.
  email: ivaneleckih@jinr.ru
  organization: Joint Institute for Nuclear Reseach
– sequence: 4
  givenname: A. R.
  surname: Didenko
  fullname: Didenko, A. R.
  email: alisadidenko@jinr.ru
  organization: Joint Institute for Nuclear Reseach, Moscow State University
– sequence: 5
  givenname: O. A.
  surname: Dolovova
  fullname: Dolovova, O. A.
  email: kovoa@jinr.ru
  organization: Joint Institute for Nuclear Reseach
– sequence: 6
  givenname: A. D.
  surname: Tropina
  fullname: Tropina, A. D.
  email: atropina@jinr.ru
  organization: Joint Institute for Nuclear Reseach, Moscow Institute of Physics and Technology
BookMark eNplkE1PAjEQhhuDiYD-AG9NPK-22889IlExIX4EOG-60C4Fsl3abvj7dsHEg6eZvPPknZl3BAaNazQA9xg9Ykzo0wIzKqgQOKcCIcrlFRhiRnAmGReDvqci6-c3YBTCLiGEIDIEx1WwTQ0nPlpj11Yd4Ifu_LnEk_P7AKODC638eguN8zBuNfzybtOto3UNdOaszGxdB_jsQpKWrtZJ8_Bk4xYquEj-B53kFn53yu9vwbVRh6DvfusYrF5fltNZNv98e59O5lmLGY-ZMUJVokCIIWE0R1xwzaTMpS7SK0wwZmjFJUcVq8imMFVeSa02QlNKMcs5GYOHi2_r3bHTIZY71_kmrSwJ4oyjgvE8UfmFCq1Ph2r_R2FU9tGW_6IlP1nSbMI
Cites_doi 10.1088/1748-0221/11/04/P04008
10.1134/S1063778822020041
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2024. ISSN 1547-4771, Physics of Particles and Nuclei Letters, 2024, Vol. 21, No. 3, pp. 481–488. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2024.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2024. ISSN 1547-4771, Physics of Particles and Nuclei Letters, 2024, Vol. 21, No. 3, pp. 481–488. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2024.
DOI 10.1134/S1547477124700468
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1531-8567
EndPage 488
ExternalDocumentID 10_1134_S1547477124700468
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
123
1N0
29O
2J2
2JN
2JY
2KG
2LR
30V
4.4
408
40D
40E
5VS
6NX
8UJ
95.
AAAVM
AABHQ
AACDK
AAFGU
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAWCG
AAYIU
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ACBMV
ACBRV
ACBXY
ACBYP
ACDTI
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADINQ
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEFTE
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GNWQR
GQ6
GQ7
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
KOV
LLZTM
MA-
N2Q
NB0
NPVJJ
NQJWS
O9-
O93
O9J
P9T
PF0
PT4
QOS
R89
RIG
RNS
ROL
RSV
S27
S3B
SAP
SDH
SHX
SISQX
SNE
SNX
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TUC
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAYZH
SJYHP
ID FETCH-LOGICAL-p156t-ff7ab7900507fe60676e58828e95475755f4b6860b5b3d9fb2b8ead7e44415263
IEDL.DBID AEJHL
ISSN 1547-4771
IngestDate Tue Nov 19 04:30:09 EST 2024
Sat Jun 15 09:01:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p156t-ff7ab7900507fe60676e58828e95475755f4b6860b5b3d9fb2b8ead7e44415263
PQID 3065609562
PQPubID 2044403
PageCount 8
ParticipantIDs proquest_journals_3065609562
springer_journals_10_1134_S1547477124700468
PublicationCentury 2000
PublicationDate 6-2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 6-2024
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Physics of particles and nuclei letters
PublicationTitleAbbrev Phys. Part. Nuclei Lett
PublicationYear 2024
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References CR11
Tamilselvi (CR12) 2022
CR10
Collab (CR2) 2016; 11
CR4
CR6
CR5
CR8
CR7
(CR9) 2016
Boyko, Huseynov, Koval (CR1) 2022; 85
Collab (CR3) 2018; 13
References_xml – volume: 11
  start-page: P04008
  year: 2016
  ident: CR2
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/11/04/P04008
  contributor:
    fullname: Collab
– ident: CR6
– volume: 13
  start-page: 05011
  year: 2018
  ident: CR3
  publication-title: J. Instrum
  contributor:
    fullname: Collab
– ident: CR5
– volume: 85
  start-page: 167
  year: 2022
  end-page: 175
  ident: CR1
  article-title: Monte-Carlo study of associated Higgs boson production with a single top-quark
  publication-title: Phys. At. Nucl.
  doi: 10.1134/S1063778822020041
  contributor:
    fullname: Koval
– ident: CR7
– ident: CR8
– year: 2016
  ident: CR9
  publication-title: Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector
– ident: CR4
– year: 2022
  ident: CR12
  contributor:
    fullname: Tamilselvi
– ident: CR10
– ident: CR11
SSID ssj0043303
Score 2.326738
Snippet The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that...
The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 481
SubjectTerms Artificial neural networks
Evolutionary algorithms
Higgs bosons
Large Hadron Collider
Monte Carlo simulation
Particle and Nuclear Physics
Physics
Physics and Astronomy
Physics of Elementary Particles and Atomic Nuclei. Experiment
Title Using Artificial Neural Networks to Search for the Production of the Higgs Boson Together with a Single Top Quark
URI https://link.springer.com/article/10.1134/S1547477124700468
https://www.proquest.com/docview/3065609562
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB3RVkhc2BGFgubADZkli-0cC7SqEEJILRK3qnZsDkVJIen_M3YSEMsFTpHsiRU7jue98eQZ4CTQUgc6jVl0aQUjBG6Z0twwI1NjNAGS0AuYjsbi_kneDJxMTvARusjmZ82OpF-oq2NHovMx-XqCvoL8kVNk57IFHXI9cdSGTn9wO7pr1t-IGLpPqyd75m6o9zJ_beQLrvy2Feo9zHDjP8-2Ces1nsR-NQG2YMVk27Dq8zp1sQOvPiXAV1dSEejUOPzFp38XWOZYpRwjwVckOIgPlQgsvTDMrS9xcekCr3LC5jjJn_0_wugiuDjDMbX_Yqh4gS5BdL4Lj8PB5HrE6lMW2IK4W8msFTMlEicEI6whPiO4iQl3S5NQrwjNxTZSXPILFaswTawKlKTpJ0zkqFjAwz1oZ3lm9gH5LAyJb5G9Id7msY3UPInJ4yUqiXUXes1oT-tPpZi6o-ud6h0PunDaDO9ntScpYTT9McYHf7I-hLWA4EgVPOlBu3xbmiNoFenyuJ4_7xMivbk
link.rule.ids 315,782,786,27934,27935,41074,42143,48345,48348,49650,49653,52154
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MgGH7jthi9-G2cTuXgzRBnP4Aep25ucS4mq4m3ZlDwoGmn3f6_L7SN8eOipyZASUsp7_PAwwPAmaeE8lQa0uDScIoI3FCpmKZapForBCS-MzAdTvnkSdz0rU2OX--FcWr3eknSjdTluSPBxRSDPWJfjgHJWrIz0YCWNTvvNqHVG8W3g3oADpCiO109lqf2hmox89dKvgDLb2uhLsQMNv_1cFuwUSFK0iu7wDas6GwHVp2yUxW78OZEAS67NIsg1o_DXZwAvCCLnJSiY4IAliAgJA-lDSx-MpIbl2JnpgtylSM6J3H-7HYJEzuHS2ZkivW_akyeEysRfdmDx0E_vh7S6pwFOkf2tqDG8JnkkbWC4UYjo-FMh4i8hY7wrRDPhSaQTLCuDKWfRkZ6UmAH5DqwZMxj_j40szzTB0DYzPeRcWF5jczNoRuhWBRizItkFKo2dOrmTqqfpUjs4fXW9455bTivm_cz29EUP0h-tPHhn0qfwtowvh8n49Hk7gjWPQQn5VRKB5qL96U-hkaRLk-qzvQBgcrBoA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MgGH7jtmi8-G2cTuXgzZBpP4CezNQtU5dlyWbirRkUPGjaabv_7wttY_y4GE9NgJJCad_ngYcHgDNPCeWpJKTBpeEUEbihUjFNtUi0VghIfGdgOpzy8ZO47VubnKt6L4xTu9dLkuWeBuvSlBbdRWKqM0iC7hQDP-JgjsHJ2rMz0YBWYKWFTWj1-vfDUf0zDpCuO409lqf2hmph89dKvoDMb-uiLtwMNv_9oFuwUSFN0iuHxjas6HQHVp3iU-W78ObEAi67NJEg1qfDXZwwPCdFRkoxMkFgSxAokklpD4uvkmTGpdgZ65xcZ4jaySx7druHiZ3bJXMyxfpfNSYviJWOvuzB46A_uxnS6vwFukBWV1Bj-FzyyFrEcKOR6XCmQ0TkQkfYKsR5oQkkE-xChtJPIiM9KXBgch1YkuYxfx-aaZbqAyBs7vvIxLC8RkbnUI9QLAoxFkYyClUbOnXXx9VHlMf2UHvrh8e8NpzXXf2Z7eiLH8Q_-vjwT6VPYW1yO4hHd-OHI1j3ELOUMywdaBbvS30MjTxZnlTj6gO508ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Artificial+Neural+Networks+to+Search+for+the+Production+of+the+Higgs+Boson+Together+with+a+Single+Top+Quark&rft.jtitle=Physics+of+particles+and+nuclei+letters&rft.au=Boiko%2C+I.+R.&rft.au=Guseinov%2C+N.+A.&rft.au=Eletskikh%2C+I.+V.&rft.au=Didenko%2C+A.+R.&rft.date=2024-01-01&rft.pub=Pleiades+Publishing&rft.issn=1547-4771&rft.eissn=1531-8567&rft.volume=21&rft.issue=3&rft.spage=481&rft.epage=488&rft_id=info:doi/10.1134%2FS1547477124700468&rft.externalDocID=10_1134_S1547477124700468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-4771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-4771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-4771&client=summon