Using Artificial Neural Networks to Search for the Production of the Higgs Boson Together with a Single Top Quark
The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that makes it possible to construct a neural network with an optimal set of parameters has been developed. Using Monte Carlo simulation, the signific...
Saved in:
Published in: | Physics of particles and nuclei letters Vol. 21; no. 3; pp. 481 - 488 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Moscow
Pleiades Publishing
2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The possibility of using artificial neural networks to search for a rare
process at the Large Hadron Collider is considered. An evolutionary algorithm that makes it possible to construct a neural network with an optimal set of parameters has been developed. Using Monte Carlo simulation, the significance of signal separation from the background is assessed. The use of neural networks significantly increases the signal significance and makes it possible to detect the
process based on the data from completed sessions of the Large Hadron Collider. |
---|---|
AbstractList | The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that makes it possible to construct a neural network with an optimal set of parameters has been developed. Using Monte Carlo simulation, the significance of signal separation from the background is assessed. The use of neural networks significantly increases the signal significance and makes it possible to detect the process based on the data from completed sessions of the Large Hadron Collider. The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that makes it possible to construct a neural network with an optimal set of parameters has been developed. Using Monte Carlo simulation, the significance of signal separation from the background is assessed. The use of neural networks significantly increases the signal significance and makes it possible to detect the process based on the data from completed sessions of the Large Hadron Collider. |
Author | Boiko, I. R. Dolovova, O. A. Guseinov, N. A. Eletskikh, I. V. Didenko, A. R. Tropina, A. D. |
Author_xml | – sequence: 1 givenname: I. R. surname: Boiko fullname: Boiko, I. R. email: boyko@jinr.ru organization: Joint Institute for Nuclear Reseach – sequence: 2 givenname: N. A. surname: Guseinov fullname: Guseinov, N. A. email: nguseynov@jinr.ru organization: Joint Institute for Nuclear Reseach – sequence: 3 givenname: I. V. surname: Eletskikh fullname: Eletskikh, I. V. email: ivaneleckih@jinr.ru organization: Joint Institute for Nuclear Reseach – sequence: 4 givenname: A. R. surname: Didenko fullname: Didenko, A. R. email: alisadidenko@jinr.ru organization: Joint Institute for Nuclear Reseach, Moscow State University – sequence: 5 givenname: O. A. surname: Dolovova fullname: Dolovova, O. A. email: kovoa@jinr.ru organization: Joint Institute for Nuclear Reseach – sequence: 6 givenname: A. D. surname: Tropina fullname: Tropina, A. D. email: atropina@jinr.ru organization: Joint Institute for Nuclear Reseach, Moscow Institute of Physics and Technology |
BookMark | eNplkE1PAjEQhhuDiYD-AG9NPK-22889IlExIX4EOG-60C4Fsl3abvj7dsHEg6eZvPPknZl3BAaNazQA9xg9Ykzo0wIzKqgQOKcCIcrlFRhiRnAmGReDvqci6-c3YBTCLiGEIDIEx1WwTQ0nPlpj11Yd4Ifu_LnEk_P7AKODC638eguN8zBuNfzybtOto3UNdOaszGxdB_jsQpKWrtZJ8_Bk4xYquEj-B53kFn53yu9vwbVRh6DvfusYrF5fltNZNv98e59O5lmLGY-ZMUJVokCIIWE0R1xwzaTMpS7SK0wwZmjFJUcVq8imMFVeSa02QlNKMcs5GYOHi2_r3bHTIZY71_kmrSwJ4oyjgvE8UfmFCq1Ph2r_R2FU9tGW_6IlP1nSbMI |
Cites_doi | 10.1088/1748-0221/11/04/P04008 10.1134/S1063778822020041 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2024. ISSN 1547-4771, Physics of Particles and Nuclei Letters, 2024, Vol. 21, No. 3, pp. 481–488. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2024. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2024. ISSN 1547-4771, Physics of Particles and Nuclei Letters, 2024, Vol. 21, No. 3, pp. 481–488. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2024. |
DOI | 10.1134/S1547477124700468 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1531-8567 |
EndPage | 488 |
ExternalDocumentID | 10_1134_S1547477124700468 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 123 1N0 29O 2J2 2JN 2JY 2KG 2LR 30V 4.4 408 40D 40E 5VS 6NX 8UJ 95. AAAVM AABHQ AACDK AAFGU AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAWCG AAYIU AAYTO ABDZT ABECU ABFGW ABFTV ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ACBMV ACBRV ACBXY ACBYP ACDTI ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADINQ ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEFTE AEGNC AEJHL AEJRE AEMSY AEOHA AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGDGC AGGBP AGJBK AGMZJ AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BDATZ CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GNWQR GQ6 GQ7 HG6 HLICF HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW KOV LLZTM MA- N2Q NB0 NPVJJ NQJWS O9- O93 O9J P9T PF0 PT4 QOS R89 RIG RNS ROL RSV S27 S3B SAP SDH SHX SISQX SNE SNX SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG TUC UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAYZH SJYHP |
ID | FETCH-LOGICAL-p156t-ff7ab7900507fe60676e58828e95475755f4b6860b5b3d9fb2b8ead7e44415263 |
IEDL.DBID | AEJHL |
ISSN | 1547-4771 |
IngestDate | Tue Nov 19 04:30:09 EST 2024 Sat Jun 15 09:01:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p156t-ff7ab7900507fe60676e58828e95475755f4b6860b5b3d9fb2b8ead7e44415263 |
PQID | 3065609562 |
PQPubID | 2044403 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3065609562 springer_journals_10_1134_S1547477124700468 |
PublicationCentury | 2000 |
PublicationDate | 6-2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 6-2024 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Physics of particles and nuclei letters |
PublicationTitleAbbrev | Phys. Part. Nuclei Lett |
PublicationYear | 2024 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | CR11 Tamilselvi (CR12) 2022 CR10 Collab (CR2) 2016; 11 CR4 CR6 CR5 CR8 CR7 (CR9) 2016 Boyko, Huseynov, Koval (CR1) 2022; 85 Collab (CR3) 2018; 13 |
References_xml | – volume: 11 start-page: P04008 year: 2016 ident: CR2 publication-title: J. Instrum. doi: 10.1088/1748-0221/11/04/P04008 contributor: fullname: Collab – ident: CR6 – volume: 13 start-page: 05011 year: 2018 ident: CR3 publication-title: J. Instrum contributor: fullname: Collab – ident: CR5 – volume: 85 start-page: 167 year: 2022 end-page: 175 ident: CR1 article-title: Monte-Carlo study of associated Higgs boson production with a single top-quark publication-title: Phys. At. Nucl. doi: 10.1134/S1063778822020041 contributor: fullname: Koval – ident: CR7 – ident: CR8 – year: 2016 ident: CR9 publication-title: Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector – ident: CR4 – year: 2022 ident: CR12 contributor: fullname: Tamilselvi – ident: CR10 – ident: CR11 |
SSID | ssj0043303 |
Score | 2.326738 |
Snippet | The possibility of using artificial neural networks to search for a rare
process at the Large Hadron Collider is considered. An evolutionary algorithm that... The possibility of using artificial neural networks to search for a rare process at the Large Hadron Collider is considered. An evolutionary algorithm that... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 481 |
SubjectTerms | Artificial neural networks Evolutionary algorithms Higgs bosons Large Hadron Collider Monte Carlo simulation Particle and Nuclear Physics Physics Physics and Astronomy Physics of Elementary Particles and Atomic Nuclei. Experiment |
Title | Using Artificial Neural Networks to Search for the Production of the Higgs Boson Together with a Single Top Quark |
URI | https://link.springer.com/article/10.1134/S1547477124700468 https://www.proquest.com/docview/3065609562 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB3RVkhc2BGFgubADZkli-0cC7SqEEJILRK3qnZsDkVJIen_M3YSEMsFTpHsiRU7jue98eQZ4CTQUgc6jVl0aQUjBG6Z0twwI1NjNAGS0AuYjsbi_kneDJxMTvARusjmZ82OpF-oq2NHovMx-XqCvoL8kVNk57IFHXI9cdSGTn9wO7pr1t-IGLpPqyd75m6o9zJ_beQLrvy2Feo9zHDjP8-2Ces1nsR-NQG2YMVk27Dq8zp1sQOvPiXAV1dSEejUOPzFp38XWOZYpRwjwVckOIgPlQgsvTDMrS9xcekCr3LC5jjJn_0_wugiuDjDMbX_Yqh4gS5BdL4Lj8PB5HrE6lMW2IK4W8msFTMlEicEI6whPiO4iQl3S5NQrwjNxTZSXPILFaswTawKlKTpJ0zkqFjAwz1oZ3lm9gH5LAyJb5G9Id7msY3UPInJ4yUqiXUXes1oT-tPpZi6o-ud6h0PunDaDO9ntScpYTT9McYHf7I-hLWA4EgVPOlBu3xbmiNoFenyuJ4_7xMivbk |
link.rule.ids | 315,782,786,27934,27935,41074,42143,48345,48348,49650,49653,52154 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MgGH7jthi9-G2cTuXgzRBnP4Aep25ucS4mq4m3ZlDwoGmn3f6_L7SN8eOipyZASUsp7_PAwwPAmaeE8lQa0uDScIoI3FCpmKZapForBCS-MzAdTvnkSdz0rU2OX--FcWr3eknSjdTluSPBxRSDPWJfjgHJWrIz0YCWNTvvNqHVG8W3g3oADpCiO109lqf2hmox89dKvgDLb2uhLsQMNv_1cFuwUSFK0iu7wDas6GwHVp2yUxW78OZEAS67NIsg1o_DXZwAvCCLnJSiY4IAliAgJA-lDSx-MpIbl2JnpgtylSM6J3H-7HYJEzuHS2ZkivW_akyeEysRfdmDx0E_vh7S6pwFOkf2tqDG8JnkkbWC4UYjo-FMh4i8hY7wrRDPhSaQTLCuDKWfRkZ6UmAH5DqwZMxj_j40szzTB0DYzPeRcWF5jczNoRuhWBRizItkFKo2dOrmTqqfpUjs4fXW9455bTivm_cz29EUP0h-tPHhn0qfwtowvh8n49Hk7gjWPQQn5VRKB5qL96U-hkaRLk-qzvQBgcrBoA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MgGH7jtmi8-G2cTuXgzZBpP4CezNQtU5dlyWbirRkUPGjaabv_7wttY_y4GE9NgJJCad_ngYcHgDNPCeWpJKTBpeEUEbihUjFNtUi0VghIfGdgOpzy8ZO47VubnKt6L4xTu9dLkuWeBuvSlBbdRWKqM0iC7hQDP-JgjsHJ2rMz0YBWYKWFTWj1-vfDUf0zDpCuO409lqf2hmph89dKvoDMb-uiLtwMNv_9oFuwUSFN0iuHxjas6HQHVp3iU-W78ObEAi67NJEg1qfDXZwwPCdFRkoxMkFgSxAokklpD4uvkmTGpdgZ65xcZ4jaySx7druHiZ3bJXMyxfpfNSYviJWOvuzB46A_uxnS6vwFukBWV1Bj-FzyyFrEcKOR6XCmQ0TkQkfYKsR5oQkkE-xChtJPIiM9KXBgch1YkuYxfx-aaZbqAyBs7vvIxLC8RkbnUI9QLAoxFkYyClUbOnXXx9VHlMf2UHvrh8e8NpzXXf2Z7eiLH8Q_-vjwT6VPYW1yO4hHd-OHI1j3ELOUMywdaBbvS30MjTxZnlTj6gO508ps |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Artificial+Neural+Networks+to+Search+for+the+Production+of+the+Higgs+Boson+Together+with+a+Single+Top+Quark&rft.jtitle=Physics+of+particles+and+nuclei+letters&rft.au=Boiko%2C+I.+R.&rft.au=Guseinov%2C+N.+A.&rft.au=Eletskikh%2C+I.+V.&rft.au=Didenko%2C+A.+R.&rft.date=2024-01-01&rft.pub=Pleiades+Publishing&rft.issn=1547-4771&rft.eissn=1531-8567&rft.volume=21&rft.issue=3&rft.spage=481&rft.epage=488&rft_id=info:doi/10.1134%2FS1547477124700468&rft.externalDocID=10_1134_S1547477124700468 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-4771&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-4771&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-4771&client=summon |