Reversible regulation of P2Y(2) nucleotide receptor expression in the duct-ligated rat submandibular gland
Ligation of the main excretory duct of the rat submandibular gland (SMG) produces a pronounced atrophy that is reversed upon ligature removal. Based on previous studies by our group and others suggesting that P2Y(2) nucleotide receptors are upregulated in response to tissue damage, we hypothesized t...
Saved in:
Published in: | American Journal of Physiology: Cell Physiology Vol. 279; no. 2; p. C286 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-08-2000
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ligation of the main excretory duct of the rat submandibular gland (SMG) produces a pronounced atrophy that is reversed upon ligature removal. Based on previous studies by our group and others suggesting that P2Y(2) nucleotide receptors are upregulated in response to tissue damage, we hypothesized that P2Y(2) receptor activity and mRNA levels would increase after duct ligation and return to control levels after ligature removal. Our results support this hypothesis. Intracellular Ca(2+) mobilization in response to the P2Y(2) receptor agonist UTP in SMG cells was increased significantly after ligation periods of 1.5 to 7 days, whereas no significant response was observed in the contralateral, nonligated gland. P2Y(2) receptor mRNA, as measured by semiquantitative RT-PCR, increased about 15-fold after 3 days of ligation. These increases reverted to control levels by 14 days after ligature removal. In situ hybridization revealed that the changes in P2Y(2) receptor mRNA abundance occurred mostly in acinar cells, which also were more adversely affected by ligation, including an increase in the appearance of apoptotic bodies. These findings support the idea that P2Y(2) receptor upregulation may be an important component of the response to injury in SMG and that recovery of normal physiological function may signal a decreased requirement for P2Y(2) receptors. |
---|---|
ISSN: | 0363-6143 |
DOI: | 10.1152/ajpcell.2000.279.2.C286 |