Regulation of the rate of synthesis of nitric oxide by Mg(2+) and hypoxia. Studies in rat heart mitochondria
In isolated rat heart mitochondria, L-arginine is oxidized by a nitric oxide synthase (mtNOS) achieving maximal rates at 1 mM L-arginine. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (NAME) inhibits the increase in NO production. Extramitochondrial free magnesium inhibited NOS production by...
Saved in:
Published in: | Amino acids Vol. 22; no. 4; pp. 381 - 389 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Austria
01-06-2002
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In isolated rat heart mitochondria, L-arginine is oxidized by a nitric oxide synthase (mtNOS) achieving maximal rates at 1 mM L-arginine. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (NAME) inhibits the increase in NO production. Extramitochondrial free magnesium inhibited NOS production by 59% at 3.2 mM. The mitochondrial free Mg(2+) concentration increased to different extents in the presence of L-arginine (29%), the NO donor (S-nitroso-N-acetylpenicillamine) (105%) or the NOS inhibitors L-NAME (48%) or N(G)-nitro-L-arginine methyl ester, N(G)-monomethyl-L-arginine (L-NMMA) (53%). Under hypoxic conditions, mtNOS activity was inhibited by Mg(2+) by up to 50% after 30 min of incubation. Reoxygenation restored the activity of the mtNOS to pre-hypoxia levels. The results suggest that in heart mitochondria there is an interaction between Mg(2+) levels and mtNOS activity which in turn is modified by hypoxia and reoxygenation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0939-4451 |
DOI: | 10.1007/s007260200022 |