In-Sensor Computing Realization Using Fully CMOS-Compatible TiN/HfOx-Based Neuristor Array

With the evolution of artificial intelligence, the explosive growth of data from sensory terminals gives rise to severe energy-efficiency bottleneck issues due to cumbersome data interactions among sensory, memory, and computing modules. Heterogeneous integration methods such as chiplet technology c...

Full description

Saved in:
Bibliographic Details
Published in:ACS sensors Vol. 8; no. 10; pp. 3873 - 3881
Main Authors: Zhang, Haizhong, Qiu, Peng, Lu, Yaoping, Ju, Xin, Chi, Dongzhi, Yew, Kwang Sing, Zhu, Minmin, Wang, Shaohao, Wei, Rongshan, Hu, Wei
Format: Journal Article
Language:English
Published: 27-10-2023
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the evolution of artificial intelligence, the explosive growth of data from sensory terminals gives rise to severe energy-efficiency bottleneck issues due to cumbersome data interactions among sensory, memory, and computing modules. Heterogeneous integration methods such as chiplet technology can significantly reduce unnecessary data movement; however, they fail to address the fundamental issue of the substantial time and energy overheads resulting from the physical separation of computing and sensory components. Brain-inspired in-sensor neuromorphic computing (ISNC) has plenty of room for such data-intensive applications. However, one key obstacle in developing ISNC systems is the lack of compatibility between material systems and manufacturing processes deployed in sensors and computing units. This study successfully addresses this challenge by implementing fully CMOS-compatible TiN/HfOx-based neuristor array. The developed ISNC system demonstrates several advantageous features, including multilevel analogue modulation, minimal dispersion, and no significant degradation in conductance (@125 °C). These characteristics enable stable and reproducible neuromorphic computing. Additionally, the device exhibits modulatable sensory and multi-store memory processes. Furthermore, the system achieves information recognition with a high accuracy rate of 93%, along with frequency selectivity and notable activity-dependent plasticity. This work provides a promising route to affordable and highly efficient sensory neuromorphic systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2379-3694
DOI:10.1021/acssensors.3c01418