Sample preserving deep interface characterization technique
We propose a nondestructive technique based on atomic core-level shifts to characterize the interface quality of thin film nanomaterials. Our method uses the inherent sensitivity of the atomic core-level binding energies to their local surroundings in order to probe the layer-resolved binary alloy c...
Saved in:
Published in: | Physical review letters Vol. 97; no. 26; p. 266106 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
31-12-2006
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a nondestructive technique based on atomic core-level shifts to characterize the interface quality of thin film nanomaterials. Our method uses the inherent sensitivity of the atomic core-level binding energies to their local surroundings in order to probe the layer-resolved binary alloy composition profiles at deeply embedded interfaces. From an analysis based upon high energy x-ray photoemission spectroscopy and density functional theory of a Ni/Cu fcc (100) model system, we demonstrate that this technique is a sensitive tool to characterize the sharpness of a buried interface. We performed controlled interface tuning by gradually approaching the diffusion temperature of the multilayer, which lead to intermixing. We show that core-level spectroscopy directly reflects the changes in the electronic structure of the buried interfaces, which ultimately determines the functionality of the nanosized material. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.97.266106 |