Cadmium Induces Intracellular Ca2+- and H2O2-Dependent Apoptosis through JNK- and p53-Mediated Pathways in Skin Epidermal Cell line

Cadmium is a toxic heavy metal and has been widely used in industry. The skin is an important target for this metal. The mechanisms by which cadmium leads to damage to the skin are unclear at present. The aims of this study were to examine whether cadmium induces apoptosis in mouse skin epidermal ce...

Full description

Saved in:
Bibliographic Details
Published in:Toxicological sciences Vol. 113; no. 1; pp. 127 - 137
Main Authors: Son, Young-Ok, Lee, Jeong-Chae, Hitron, J. Andrew, Pan, Jingju, Zhang, Zhuo, Shi, Xianglin
Format: Journal Article
Language:English
Published: United States Oxford University Press 01-01-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cadmium is a toxic heavy metal and has been widely used in industry. The skin is an important target for this metal. The mechanisms by which cadmium leads to damage to the skin are unclear at present. The aims of this study were to examine whether cadmium induces apoptosis in mouse skin epidermal cell line, JB6 Cl41 cells, and to investigate the cellular mechanisms by which cadmium causes cytotoxicity in the cells. The present study showed that cadmium induced cell death by apoptosis in a dose-dependent manner, as proven by the appearance of cell shrinkage, the increase of Annexin V positively stained cells, and the formation of nuclear DNA ladders. Cadmium-induced apoptosis involved a mitochondria-mediated mechanism but not caspase-dependent pathway in that the critical apoptotic events induced by cadmium, such as the decrease of Bcl-2/Bcl-xL, the increase of GADD45α, and the nuclear translocation of apoptosis inducing factor, were not affected by the inhibition of executive caspases. In contrast, blockage of p53 and JNK by pharmacological inhibitors or small interference RNA transfection suppressed the cadmium-induced apoptosis with the concomitant inhibition of antiapoptotic Bcl-2 family proteins and GADD45α, respectively. Furthermore, the activation of p53 and JNK and their downstream proteins in cadmium-exposed cells were inhibited by individual treatment with catalase and Bapta-acetoxymethyl. These results suggest that cadmium induces apoptosis via the activation of JNK- and p53-mediated signaling, where calcium ion and hydrogen peroxide act as the pivotal mediators of the apoptotic signaling.
ISSN:1096-6080
1096-0929
DOI:10.1093/toxsci/kfp259