Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings
In order to explore the potential impact of microgravity on flavonoid biosynthesis, we examined isoflavonoid levels in soybean (Glycine max) tissues generated under both spaceflight and clinorotation conditions. A 6-day Space Shuttle-based microgravity exposure resulted in enhanced accumulation of i...
Saved in:
Published in: | Journal of gravitational physiology Vol. 8; no. 2; p. 21 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-12-2001
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to explore the potential impact of microgravity on flavonoid biosynthesis, we examined isoflavonoid levels in soybean (Glycine max) tissues generated under both spaceflight and clinorotation conditions. A 6-day Space Shuttle-based microgravity exposure resulted in enhanced accumulation of isoflavone glycosides (daidzin, 6"-O-malonyl-7-O-glucosyl daidzein, genistin, 6"-O-malonyl-7-O-glucosyl genistein) in hypocotyl and root tissues, but reduced levels in cotyledons (relative to 1g controls on Earth). Soybean seedlings grown on a horizontally rotating clinostat for 3, 4 and 5 days exhibited (relative to a vertical clinorotation control) an isoflavonoid accumulation pattern similar to the space-grown tissues. Elevated isoflavonoid levels attributable to the clinorotation treatment were transient, with the greatest increase observed in the three-day-treated tissues and smaller increases in the four- and five-day-treated tissues. Differences between stresses presented by spaceflight and clinorotation and the resulting biochemical adaptations are discussed, as is whether the increase in isoflavonoid concentrations were due to differential rates of development under the "gravity" treatments employed. Results suggest that spaceflight exposure does not impair isoflavonoid accumulation in developing soybean tissues and that isoflavonoids respond positively to microgravity as a biochemical strategy of adaptation. |
---|---|
ISSN: | 1077-9248 |