No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO₂ fertilization

Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high north...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 52; pp. E8406 - E8414
Main Authors: Girardin, Martin P., Bouriaud, Olivier, Hogg, Edward H., Kurz, Werner, Zimmermann, Niklaus E., Metsaranta, Juha M., de Jong, Rogier, Frank, David C., Esper, Jan, Büntgen, Ulf, Guo, Xiao Jing, Bhatti, Jagtar
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 27-12-2016
Series:From the Cover
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada’s boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada’s National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO₂ concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO₂ concentration.
Bibliography:2Present address: National Forest Inventory, National Institute for Research Development in Forestry, Voluntari, Ilfov 077190, Romania.
Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved November 7, 2016 (received for review June 22, 2016)
Author contributions: M.P.G., O.B., W.K., X.J.G., and J.B. designed research; M.P.G., O.B., and X.J.G. performed research; M.P.G., O.B., E.H.H., N.E.Z., J.M.M., R.d.J., D.C.F., J.E., and U.B. contributed new reagents/analytic tools; M.P.G., O.B., J.M.M., R.d.J., and X.J.G. analyzed data; and M.P.G., O.B., E.H.H., W.K., N.E.Z., J.M.M., D.C.F., U.B., and X.J.G. wrote the paper.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1610156113