周辺環境の障害物を考慮した深層学習による歩行者の軌道予測

Saved in:
Bibliographic Details
Published in:日本機械学会論文集 Vol. 87; no. 899; p. 21-00125
Main Authors: 杉浦, 尚弥, 松田, 匠未, 黒田, 洋司
Format: Journal Article
Language:Japanese
Published: 一般社団法人 日本機械学会 2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Author 杉浦, 尚弥
松田, 匠未
黒田, 洋司
Author_xml – sequence: 1
  fullname: 杉浦, 尚弥
  organization: 明治大学大学院 理工学研究科
– sequence: 2
  fullname: 松田, 匠未
  organization: 明治大学 理工学部
– sequence: 3
  fullname: 黒田, 洋司
  organization: 明治大学 理工学部
BookMark eNo9kE1LAkEAhocoyMw_0H9Ym4-d3ZljSJ8IXew8TO5suajFrpduriIUeckOQQRRRCSlJB0Kg_ox067rv8g-8PRc3vfl5VkAs9WDqgJgCcEswpwv13xZDbygorIYGRAiTGdACiNmG9y20DzIBEFpFxILU0ZsmgKF6Owh-RiOOs_RbVOH_fHlVdR_GZ10daOT1Jtxq6_DCx1ex6-DaHAX9e5Hnx0dPurGsW6cxr1uctNO6q1JMXlvj8Pzr-Fx_Pa0COZcWQ5U5p9psLO2WshtGPnt9c3cSt7wMDGhgbGJXQu7DlKQIeU42EFSWaZrK8UpdxWBlEJHYoqVJRktmsh0JsctyjhniJA02Prb9YKa3FPi0C9VpH8kpF8rFctKTGUIZotJ5wcYiV8t01BxX_rCk-QbqLh_bA
ContentType Journal Article
Copyright 2021 一般社団法人日本機械学会
Copyright_xml – notice: 2021 一般社団法人日本機械学会
DOI 10.1299/transjsme.21-00125
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2187-9761
EndPage 21-00125
ExternalDocumentID article_transjsme_87_899_87_21_00125_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
ID FETCH-LOGICAL-j2340-2242f62fd1e081edd2d1ae64f7ee959fe30550da252e6a85c414d258658998133
IngestDate Sun Jul 28 05:07:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 899
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2340-2242f62fd1e081edd2d1ae64f7ee959fe30550da252e6a85c414d258658998133
OpenAccessLink http://dx.doi.org/10.1299/transjsme.21-00125
ParticipantIDs jstage_primary_article_transjsme_87_899_87_21_00125_article_char_ja
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle 日本機械学会論文集
PublicationYear 2021
Publisher 一般社団法人 日本機械学会
Publisher_xml – name: 一般社団法人 日本機械学会
References Thrun, S., Burgard, W. and Fox, D., Probabilistic Robotics, The MIT press (2005).
Helbing, D. and Molnar, P., Social force model for pedestrian dynamics, Physical review E, Vol. 51, No. 5 (1995), pp.4282-4286.
Mohamed, A., Qian, K., Elhoseiny, M. and Claudel, C., Social-stgcnn: a social spatio-temporal graph convolutional neural network for human trajectory prediction, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2020).
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L. and Savarese, S., Social lstm: human trajectory prediction in crowded spaces, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2016), pp.961-971.
Kingma, D. P. and Ba, J. L., Adam: a method for stochastic optimization, Proceedings of the International Conference on Learning Representations (ICLR) (2015), pp.1-15.
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H. and Savarese, S., Sophie: an attentive gan for predicting paths compliant to social and physical constraints, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2019).
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y., Graph attention networks, Proceedings of the International Conference on Learning Representations (ICLR)(2017).
Rudenko, A.,Kucner, T. P., Swaminathan, C. S., Chadalavada, R. T., Arras, K. O., and Lilienthal, A. J., Thör: human-robot navigation data collection and accurate motion trajectories dataset, IEEE Robotics and Automation Letters, Vol.5, No.2 (2020).
Yagi, T., Mangalam, K., Yonetani, R. and Sato, Y., Future person localization in first-person videos, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2018).
Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural computation, Vol.9, No.8 (1997), pp.1735-1780.
Huang, Y., Bi, H., Li, Z., Mao, T. and Wang, Z., Stgat: modeling spatialtemporal interactions for human trajectory prediction, Proceedings of the IEEE International Conference on Computer Vision (ICCV)(2019), pp.6272–6281.
Takanashi, H., Abe, K., Michitsuji, Y., Shino, M., Raksincharoensak, P. and Hayashi, R., Stochastic prediction model for obstacle avoidance route of pedestrian, Transactions of the JSME (in Japanese), Vol.83,No.855 (2017), DOI:10.1299/transjsme.17-00224.
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S. and Alahi, A., Social gan: socially acceptable trajectories with generative adversarial networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2018).
Styles, O., Guha, T. and Sanchez, V., Multiple object forecasting: predicting future object locations in diverse environments, Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)(2020), pp.690-699.
Clevert, D., Unterthiner, T. and Vandergheynst, P., Fast and accurate deep network learning by exponential linear units(elus), Proceedings of the International Conference on Learning Representations (ICLR)(2016).
References_xml
SSID ssib036258375
ssib016970096
ssib051641555
ssj0002911760
ssib016970100
Score 2.2635581
SourceID jstage
SourceType Publisher
StartPage 21-00125
SubjectTerms Attention mechanism
Mobile robot
Spatial interaction
Static obstacle
Trajectory prediction
Title 周辺環境の障害物を考慮した深層学習による歩行者の軌道予測
URI https://www.jstage.jst.go.jp/article/transjsme/87/899/87_21-00125/_article/-char/ja
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本機械学会論文集, 2021, Vol.87(899), pp.21-00125-21-00125
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9RAFA-1XvQgfmL9ogfnJNHMJJOZOU7SLD15sYK3kN1kDwtWse2921Ko2Iv1IIggiohFWywelAr6x8Tdbv8L35sku1l70aKX7OzM-36Zfb8ZNhPLui54083aSWb7LYfbcFOktnSpb6sm_va5QrXMERuzd8Tte3Im8qKJyep9eaO-_5pp6INc45Ozf5HtoVDogDbkHK6Qdbj-Ud5JxImiREsSSRJEJNAkEkQxEjg4pBmRLolcQJBERyRSRGmiQjMExC4SS0W0MjQMGUGOdAyXT6QhK9iVqBoNHAoECSjKgav2jMAZon0UGDSMnEJpUEqWsmoEyI7ECnVpSmRYKeU1U8GdwAwpoxTs8dA7lAPagTGsI23sBAs1N40QRo0WVVqrhwEpjARRIYYCDQiI8g0X-CtMiEDvcAfTjMxgkFAtR264TY3jjpHAUZTmv9FDKjAPHlKV9OCLdirz9IheoaMYsDF6UOaZWAFjA_yt79ew0U6NccUED0Mojd8CE4IGcHRFm0xCqhUvQxjoG0cLV1HeTR0BECdsQJ20XvRKlFNMblm8o2pYw2wEwbyGiepdh2ouTGqYFIsIrToL97Ob4_xjZ5mXsyIeEsdSxKAdPxiNDVtcEeFjh3EH1j7HGRQRVtsugVpBfSVw-T32nY6OmgRcxqU7gsac-gid-XD_lUGVF75TPkcHPtw67AGg0g6s0ar_dxrIOXfaOlWuFad1YekZa6KTnLVO1k4QPWfN9Z6-H3zf29_81Huzmnd3Dl687O183n-8la9sDpZX-2s7efd53n3V_7Lb233b2363_2Mz737IV9bzlSf97a3B643B8howDr5tHHSf_dxb73_9eN6624jmwlm7fFGK3WGu59gAw1nbZ-2UZoDwszRlKU0y32uLLFNctTM81s9JE8ZZ5ieStzzqpRAfWH0oJanrXrAm5x_MZxetaa_FeTNtuU1PwkrJbSUyoVClPZCmRJO5U1ZYhCR-WJyGEx8lp5f-iZTL1gmcYMWG6BVrcvHRUnbVOraQLl0z98ovCKfhyw
link.rule.ids 315,782,786,866,4028,27932,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%91%A8%E8%BE%BA%E7%92%B0%E5%A2%83%E3%81%AE%E9%9A%9C%E5%AE%B3%E7%89%A9%E3%82%92%E8%80%83%E6%85%AE%E3%81%97%E3%81%9F%E6%B7%B1%E5%B1%A4%E5%AD%A6%E7%BF%92%E3%81%AB%E3%82%88%E3%82%8B%E6%AD%A9%E8%A1%8C%E8%80%85%E3%81%AE%E8%BB%8C%E9%81%93%E4%BA%88%E6%B8%AC&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%A9%9F%E6%A2%B0%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E9%9B%86&rft.au=%E6%9D%89%E6%B5%A6%2C+%E5%B0%9A%E5%BC%A5&rft.au=%E6%9D%BE%E7%94%B0%2C+%E5%8C%A0%E6%9C%AA&rft.au=%E9%BB%92%E7%94%B0%2C+%E6%B4%8B%E5%8F%B8&rft.date=2021&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%A9%9F%E6%A2%B0%E5%AD%A6%E4%BC%9A&rft.eissn=2187-9761&rft.volume=87&rft.issue=899&rft.spage=21-00125&rft.epage=21-00125&rft_id=info:doi/10.1299%2Ftransjsme.21-00125&rft.externalDocID=article_transjsme_87_899_87_21_00125_article_char_ja