Self-tuning parameter fuzzy PID controller for autonomous differential drive mobile robot
The purpose of this study is to utilize the capabilities of a fuzzy PID controller for electric drives for a differential drive autonomous mobile robot trajectory application. The robot is powered by two non-identical electric motors. A self-tuning-parameter fuzzy PID controller is designed to contr...
Saved in:
Published in: | 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM) pp. 382 - 385 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-05-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this study is to utilize the capabilities of a fuzzy PID controller for electric drives for a differential drive autonomous mobile robot trajectory application. The robot is powered by two non-identical electric motors. A self-tuning-parameter fuzzy PID controller is designed to control the rotation speed of the motors independently in order to achieve a straight trajectory of the motion despite the motor differences. Simulation of the robot drive system is carried out in a Matlab/Simulink environment. Simulations were used to evaluate performance of the fuzzy self-tuning parameter PID controllers in the time domain. Conclusions are drawn concerning the performance of the controller. Furthermore, expected challenges for the future development are discussed. |
---|---|
DOI: | 10.1109/SCM.2017.7970592 |