Driver Distraction Detection with a Camera Vision System
Driver assistance systems and electronics (e.g. navigators, cell phones, etc.) steal increasing amounts of driver attention. Therefore, the vehicle industry is striving to build a driving environment where input-output devices are smartly scheduled, allowing sufficient time for the driver to focus a...
Saved in:
Published in: | 2007 IEEE International Conference on Image Processing Vol. 6; pp. VI - 201 - VI - 204 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-09-2007
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Driver assistance systems and electronics (e.g. navigators, cell phones, etc.) steal increasing amounts of driver attention. Therefore, the vehicle industry is striving to build a driving environment where input-output devices are smartly scheduled, allowing sufficient time for the driver to focus attention on the surrounding traffic. To enable a smart human-machine interface (HMI), the driver's momentary state needs to be measured. This paper describes a facility for monitoring the distraction of a driver and presents some early evaluation results. The module is able to detect the driver's visual and cognitive workload by fusing stereo vision and lane tracking data, running both rule-based and support-vector machine (SVM) classification methods. The module has been tested with data from a truck and a passenger car. The results show over 80% success in detecting visual distraction and a 68-86 % success in detecting cognitive distraction, which are satisfactory results. |
---|---|
AbstractList | Driver assistance systems and electronics (e.g. navigators, cell phones, etc.) steal increasing amounts of driver attention. Therefore, the vehicle industry is striving to build a driving environment where input-output devices are smartly scheduled, allowing sufficient time for the driver to focus attention on the surrounding traffic. To enable a smart human-machine interface (HMI), the driver's momentary state needs to be measured. This paper describes a facility for monitoring the distraction of a driver and presents some early evaluation results. The module is able to detect the driver's visual and cognitive workload by fusing stereo vision and lane tracking data, running both rule-based and support-vector machine (SVM) classification methods. The module has been tested with data from a truck and a passenger car. The results show over 80% success in detecting visual distraction and a 68-86 % success in detecting cognitive distraction, which are satisfactory results. |
Author | Kutila, M. Jokela, M. Markkula, G. Rue, M.R. |
Author_xml | – sequence: 1 givenname: M. surname: Kutila fullname: Kutila, M. organization: VTT Tech. Res. Centre of Finland, Espoo – sequence: 2 givenname: M. surname: Jokela fullname: Jokela, M. organization: VTT Tech. Res. Centre of Finland, Espoo – sequence: 3 givenname: G. surname: Markkula fullname: Markkula, G. – sequence: 4 givenname: M.R. surname: Rue fullname: Rue, M.R. |
BookMark | eNpVkN1Kw0AUhFetYK15APEmL5B4zu5mc_ZSEn8CBQWLt-Vks8EVk0oSlL69kfbGqxnmg2GYS7Hod70X4hohRQR7WxXVSyoB8lSr3GaZORGRzQm11BrnyJyKpVSECWXanv1jxi7EEjMpE00EFyIaxw8AwNzMFJaCyiF8-yEuwzgN7Kaw6-PST_7gfsL0HnNccOcHjt_C-Be-7sfJd1fivOXP0UdHXYnNw_2meErWz49VcbdOgoUpaZSsEak2DqCRhtHVXLdsrJbkKLM1sWpyx84S21azk2jm6ZkkiQ0oUitxc6gN3vvt1xA6Hvbb4w3qF4jeTOw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2007.4379556 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781424414376 1424414377 |
EISSN | 2381-8549 |
EndPage | VI - 204 |
ExternalDocumentID | 4379556 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i90t-d32b118b6c00d26a1cbabfa69428c859b8a3d7cac98a9f4ac21614252821d0383 |
IEDL.DBID | RIE |
ISBN | 9781424414369 1424414369 |
ISSN | 1522-4880 |
IngestDate | Wed Jun 26 19:42:20 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-d32b118b6c00d26a1cbabfa69428c859b8a3d7cac98a9f4ac21614252821d0383 |
ParticipantIDs | ieee_primary_4379556 |
PublicationCentury | 2000 |
PublicationDate | 2007-Sept. |
PublicationDateYYYYMMDD | 2007-09-01 |
PublicationDate_xml | – month: 09 year: 2007 text: 2007-Sept. |
PublicationDecade | 2000 |
PublicationTitle | 2007 IEEE International Conference on Image Processing |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001764140 ssj0020131 ssib030088828 ssib051315407 |
Score | 1.9890039 |
Snippet | Driver assistance systems and electronics (e.g. navigators, cell phones, etc.) steal increasing amounts of driver attention. Therefore, the vehicle industry is... |
SourceID | ieee |
SourceType | Publisher |
StartPage | VI - 201 |
SubjectTerms | camera Cameras Cellular phones classification distraction detection Driver circuits Intelligent vehicles Job shop scheduling Machine vision Man machine systems Monitoring Navigation Stereo vision vehicle Vehicle driving |
Title | Driver Distraction Detection with a Camera Vision System |
URI | https://ieeexplore.ieee.org/document/4379556 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RTkwFWsS3PDASajexY89JK7qgSlSIrXJsR2JpUdv8f86O04LEwhI5GaLE8eXu3d17BngUNpcGLTCRUtUJxv8ZmhQeTMoMY7m0yoVNbN_y1w9ZTr1MztOBC-OcC81n7tkPQy3fbkzjU2Vjr53HuehBL1ey5Wp1aydFXyZ_VIA4S5nXljvmW3KRMa9rEsGY15kJWqoIxvwi7khfGD8I1WlBdeexHMqoGs-L-aJVPoxP82tbluCVZoP_vc8ZjI70PrI4OK5zOHHrCxjEeJREa98NQZZb37VByiCuGwgQpHR71458BpdoUmif1iLvgaNOWgH0ESxn02XxksSdFpJPRfeJTScVAo1KGErtRGhmKl3VWijEJkZyVUmd2txoo6RWdabNBONENHaEa8xSxLiX0F9v1u4KSK0qjv9eluHNMmEw2qFaGcm44VrRzF7D0M_D6qvV0ljFKbj5-_ItnLa5VN_TdQf9_bZx99Db2eYhfP1vaq2i1Q |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RMsBUoEW88cBIaNzYjj03rVpRqkpUiK1ybEdiaVEf_5-zk1CQWFgix0OUWHe55_cdwIOwqTSogZGUqojQ_2eoUngxCTWUptIqF4bYvqbTd5kNPE3O4zcWxjkXms_ck1-GWr5dmZ1PlXU9dx7nogGHnKUiLdFatfQkaM3kjxoQpwn17HL7jEsqGPXMJlU45plmApsqhmNejGvYF3oQQtVsUPV9VRClseqO--NZyX1Yvc-vwSzBLg1b__uiE-jsAX5k9m26TuHALc-gVXmkpNL3TRtktvZ9GyQL9LoBAkEyt3XlyudwiSZ97RNb5C2g1ElJgd6B-XAw74-iatZC9KHibWSTXo6hRi5MHNue0NTkOi-0UBidGMlVLnViU6ONkloVTJseeoqo7hiwURtjlHsOzeVq6S6AFCrn-PelDB_GhEF_J9bKSMoN1ypm9hLa_hwWnyWbxqI6gqu_t-_haDR_mSwm4-nzNRyXmVXf4XUDze16526hsbG7uyAJXzqkpiY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+International+Conference+on+Image+Processing&rft.atitle=Driver+Distraction+Detection+with+a+Camera+Vision+System&rft.au=Kutila%2C+M.&rft.au=Jokela%2C+M.&rft.au=Markkula%2C+G.&rft.au=Rue%2C+M.R.&rft.date=2007-09-01&rft.pub=IEEE&rft.isbn=9781424414369&rft.issn=1522-4880&rft.eissn=2381-8549&rft.volume=6&rft.spage=VI+-+201&rft.epage=VI+-+204&rft_id=info:doi/10.1109%2FICIP.2007.4379556&rft.externalDocID=4379556 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon |