Driver Distraction Detection with a Camera Vision System

Driver assistance systems and electronics (e.g. navigators, cell phones, etc.) steal increasing amounts of driver attention. Therefore, the vehicle industry is striving to build a driving environment where input-output devices are smartly scheduled, allowing sufficient time for the driver to focus a...

Full description

Saved in:
Bibliographic Details
Published in:2007 IEEE International Conference on Image Processing Vol. 6; pp. VI - 201 - VI - 204
Main Authors: Kutila, M., Jokela, M., Markkula, G., Rue, M.R.
Format: Conference Proceeding
Language:English
Published: IEEE 01-09-2007
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Driver assistance systems and electronics (e.g. navigators, cell phones, etc.) steal increasing amounts of driver attention. Therefore, the vehicle industry is striving to build a driving environment where input-output devices are smartly scheduled, allowing sufficient time for the driver to focus attention on the surrounding traffic. To enable a smart human-machine interface (HMI), the driver's momentary state needs to be measured. This paper describes a facility for monitoring the distraction of a driver and presents some early evaluation results. The module is able to detect the driver's visual and cognitive workload by fusing stereo vision and lane tracking data, running both rule-based and support-vector machine (SVM) classification methods. The module has been tested with data from a truck and a passenger car. The results show over 80% success in detecting visual distraction and a 68-86 % success in detecting cognitive distraction, which are satisfactory results.
AbstractList Driver assistance systems and electronics (e.g. navigators, cell phones, etc.) steal increasing amounts of driver attention. Therefore, the vehicle industry is striving to build a driving environment where input-output devices are smartly scheduled, allowing sufficient time for the driver to focus attention on the surrounding traffic. To enable a smart human-machine interface (HMI), the driver's momentary state needs to be measured. This paper describes a facility for monitoring the distraction of a driver and presents some early evaluation results. The module is able to detect the driver's visual and cognitive workload by fusing stereo vision and lane tracking data, running both rule-based and support-vector machine (SVM) classification methods. The module has been tested with data from a truck and a passenger car. The results show over 80% success in detecting visual distraction and a 68-86 % success in detecting cognitive distraction, which are satisfactory results.
Author Kutila, M.
Jokela, M.
Markkula, G.
Rue, M.R.
Author_xml – sequence: 1
  givenname: M.
  surname: Kutila
  fullname: Kutila, M.
  organization: VTT Tech. Res. Centre of Finland, Espoo
– sequence: 2
  givenname: M.
  surname: Jokela
  fullname: Jokela, M.
  organization: VTT Tech. Res. Centre of Finland, Espoo
– sequence: 3
  givenname: G.
  surname: Markkula
  fullname: Markkula, G.
– sequence: 4
  givenname: M.R.
  surname: Rue
  fullname: Rue, M.R.
BookMark eNpVkN1Kw0AUhFetYK15APEmL5B4zu5mc_ZSEn8CBQWLt-Vks8EVk0oSlL69kfbGqxnmg2GYS7Hod70X4hohRQR7WxXVSyoB8lSr3GaZORGRzQm11BrnyJyKpVSECWXanv1jxi7EEjMpE00EFyIaxw8AwNzMFJaCyiF8-yEuwzgN7Kaw6-PST_7gfsL0HnNccOcHjt_C-Be-7sfJd1fivOXP0UdHXYnNw_2meErWz49VcbdOgoUpaZSsEak2DqCRhtHVXLdsrJbkKLM1sWpyx84S21azk2jm6ZkkiQ0oUitxc6gN3vvt1xA6Hvbb4w3qF4jeTOw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2007.4379556
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781424414376
1424414377
EISSN 2381-8549
EndPage VI - 204
ExternalDocumentID 4379556
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i90t-d32b118b6c00d26a1cbabfa69428c859b8a3d7cac98a9f4ac21614252821d0383
IEDL.DBID RIE
ISBN 9781424414369
1424414369
ISSN 1522-4880
IngestDate Wed Jun 26 19:42:20 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-d32b118b6c00d26a1cbabfa69428c859b8a3d7cac98a9f4ac21614252821d0383
ParticipantIDs ieee_primary_4379556
PublicationCentury 2000
PublicationDate 2007-Sept.
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-Sept.
PublicationDecade 2000
PublicationTitle 2007 IEEE International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001764140
ssj0020131
ssib030088828
ssib051315407
Score 1.9890039
Snippet Driver assistance systems and electronics (e.g. navigators, cell phones, etc.) steal increasing amounts of driver attention. Therefore, the vehicle industry is...
SourceID ieee
SourceType Publisher
StartPage VI - 201
SubjectTerms camera
Cameras
Cellular phones
classification
distraction detection
Driver circuits
Intelligent vehicles
Job shop scheduling
Machine vision
Man machine systems
Monitoring
Navigation
Stereo vision
vehicle
Vehicle driving
Title Driver Distraction Detection with a Camera Vision System
URI https://ieeexplore.ieee.org/document/4379556
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RTkwFWsS3PDASajexY89JK7qgSlSIrXJsR2JpUdv8f86O04LEwhI5GaLE8eXu3d17BngUNpcGLTCRUtUJxv8ZmhQeTMoMY7m0yoVNbN_y1w9ZTr1MztOBC-OcC81n7tkPQy3fbkzjU2Vjr53HuehBL1ey5Wp1aydFXyZ_VIA4S5nXljvmW3KRMa9rEsGY15kJWqoIxvwi7khfGD8I1WlBdeexHMqoGs-L-aJVPoxP82tbluCVZoP_vc8ZjI70PrI4OK5zOHHrCxjEeJREa98NQZZb37VByiCuGwgQpHR71458BpdoUmif1iLvgaNOWgH0ESxn02XxksSdFpJPRfeJTScVAo1KGErtRGhmKl3VWijEJkZyVUmd2txoo6RWdabNBONENHaEa8xSxLiX0F9v1u4KSK0qjv9eluHNMmEw2qFaGcm44VrRzF7D0M_D6qvV0ljFKbj5-_ItnLa5VN_TdQf9_bZx99Db2eYhfP1vaq2i1Q
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RMsBUoEW88cBIaNzYjj03rVpRqkpUiK1ybEdiaVEf_5-zk1CQWFgix0OUWHe55_cdwIOwqTSogZGUqojQ_2eoUngxCTWUptIqF4bYvqbTd5kNPE3O4zcWxjkXms_ck1-GWr5dmZ1PlXU9dx7nogGHnKUiLdFatfQkaM3kjxoQpwn17HL7jEsqGPXMJlU45plmApsqhmNejGvYF3oQQtVsUPV9VRClseqO--NZyX1Yvc-vwSzBLg1b__uiE-jsAX5k9m26TuHALc-gVXmkpNL3TRtktvZ9GyQL9LoBAkEyt3XlyudwiSZ97RNb5C2g1ElJgd6B-XAw74-iatZC9KHibWSTXo6hRi5MHNue0NTkOi-0UBidGMlVLnViU6ONkloVTJseeoqo7hiwURtjlHsOzeVq6S6AFCrn-PelDB_GhEF_J9bKSMoN1ypm9hLa_hwWnyWbxqI6gqu_t-_haDR_mSwm4-nzNRyXmVXf4XUDze16526hsbG7uyAJXzqkpiY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+International+Conference+on+Image+Processing&rft.atitle=Driver+Distraction+Detection+with+a+Camera+Vision+System&rft.au=Kutila%2C+M.&rft.au=Jokela%2C+M.&rft.au=Markkula%2C+G.&rft.au=Rue%2C+M.R.&rft.date=2007-09-01&rft.pub=IEEE&rft.isbn=9781424414369&rft.issn=1522-4880&rft.eissn=2381-8549&rft.volume=6&rft.spage=VI+-+201&rft.epage=VI+-+204&rft_id=info:doi/10.1109%2FICIP.2007.4379556&rft.externalDocID=4379556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon