Applying the multiclass classification methods for the classification of online social network friends

Online social networks (OSNs) are platforms which facilitate social interactions between their users through message exchange, photo and video sharing, status updates, etc. One of the most popular OSNs is Facebook. Connections between users on Facebook are modeled through concept of friendship. Each...

Full description

Saved in:
Bibliographic Details
Published in:2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) pp. 1 - 6
Main Authors: Sever, Nikolina, Humski, Luka, Ilic, Juraj, Skocir, Zoran, Pintar, Damir, Vranic, Mihaela
Format: Conference Proceeding
Language:English
Published: University of Split, FESB 01-09-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Online social networks (OSNs) are platforms which facilitate social interactions between their users through message exchange, photo and video sharing, status updates, etc. One of the most popular OSNs is Facebook. Connections between users on Facebook are modeled through concept of friendship. Each connection between users is binary - two users either are or aren't "friends". Information about of the actual intensity or nature of their connection is not available although in real life it can vary significantly. A majority of observed network friends are acquaintances in real-life while close friends are in the minority. The goal of this paper is to demonstrate and evaluate how user interaction statistics can be utilized for effective assessment of the nature of users' real-life relationship. Using an ensemble of popular classification algorithms, we will classify ego-user's network friends into 3 groups: close friends, friends and acquaintances. As our main contribution, we will compare the efficiency of chosen algorithms and suggest the best approach for conducting this type of analysis on similar OSN communication data.
AbstractList Online social networks (OSNs) are platforms which facilitate social interactions between their users through message exchange, photo and video sharing, status updates, etc. One of the most popular OSNs is Facebook. Connections between users on Facebook are modeled through concept of friendship. Each connection between users is binary - two users either are or aren't "friends". Information about of the actual intensity or nature of their connection is not available although in real life it can vary significantly. A majority of observed network friends are acquaintances in real-life while close friends are in the minority. The goal of this paper is to demonstrate and evaluate how user interaction statistics can be utilized for effective assessment of the nature of users' real-life relationship. Using an ensemble of popular classification algorithms, we will classify ego-user's network friends into 3 groups: close friends, friends and acquaintances. As our main contribution, we will compare the efficiency of chosen algorithms and suggest the best approach for conducting this type of analysis on similar OSN communication data.
Author Ilic, Juraj
Skocir, Zoran
Vranic, Mihaela
Humski, Luka
Pintar, Damir
Sever, Nikolina
Author_xml – sequence: 1
  givenname: Nikolina
  surname: Sever
  fullname: Sever, Nikolina
  email: nikolina.sever@multicom.hr
  organization: Multicom d.o.o., Zagreb, Croatia
– sequence: 2
  givenname: Luka
  surname: Humski
  fullname: Humski, Luka
  email: luka.humski@fer.hr
  organization: Fac. of Electr. Eng. & Comput., Univ. of Zagreb, Zagreb, Croatia
– sequence: 3
  givenname: Juraj
  surname: Ilic
  fullname: Ilic, Juraj
  email: juraj.ilic@fer.hr
  organization: Fac. of Electr. Eng. & Comput., Univ. of Zagreb, Zagreb, Croatia
– sequence: 4
  givenname: Zoran
  surname: Skocir
  fullname: Skocir, Zoran
  email: zoran.skocir@fer.hr
  organization: Fac. of Electr. Eng. & Comput., Univ. of Zagreb, Zagreb, Croatia
– sequence: 5
  givenname: Damir
  surname: Pintar
  fullname: Pintar, Damir
  email: damir.pintar@fer.hr
  organization: Fac. of Electr. Eng. & Comput., Univ. of Zagreb, Zagreb, Croatia
– sequence: 6
  givenname: Mihaela
  surname: Vranic
  fullname: Vranic, Mihaela
  email: mihaela.vranic@fer.hr
  organization: Fac. of Electr. Eng. & Comput., Univ. of Zagreb, Zagreb, Croatia
BookMark eNpdkEFLAzEUhKMo2Nb-AhHyB7a-7MvbTY6l2CpU9mAP3kp2N7HRbVI2K9J_r9SevMwc5mNgZsyuQgyWsXsBsxy10A-v1XKzqF5mOYhypoQgAnXBxpow1wClgks2EkqWGZJ6u2HTlD4AAHNAqfWIufnh0B19eOfDzvL9Vzf4pjMp8ZN65xsz-Bj43g672CbuYn8i_8XR8Rg6HyxPsfGm48EO37H_5K73NrTpll070yU7PfuEbZaPm8VTtq5Wz4v5OvMahoykkLluSzREDSDWqrAk81KA0KImJGNaoYpCKfqdANiQVKWtXVPLQipCnLC7v1pvrd0eer83_XF7fgV_AJZHWeA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/SOFTCOM.2017.8115508
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9532900780
9789532900781
EISSN 1847-358X
EndPage 6
ExternalDocumentID 8115508
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-541429d73a55c033b86e542710191b535aad186688500303c5487ebfcb4648533
IEDL.DBID RIE
IngestDate Wed Jun 26 19:27:42 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-541429d73a55c033b86e542710191b535aad186688500303c5487ebfcb4648533
PageCount 6
ParticipantIDs ieee_primary_8115508
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
PublicationTitleAbbrev SOFTCOM
PublicationYear 2017
Publisher University of Split, FESB
Publisher_xml – name: University of Split, FESB
SSID ssj0003203499
Score 1.7290661
Snippet Online social networks (OSNs) are platforms which facilitate social interactions between their users through message exchange, photo and video sharing, status...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algorithm design and analysis
Buildings
Classification algorithms
Data mining
educational data mining
Facebook
Linear regression
multiclass classification
online social networks
Title Applying the multiclass classification methods for the classification of online social network friends
URI https://ieeexplore.ieee.org/document/8115508
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTrDwaBFveWAkrR3biT2XVl2gSO3AViV-SCwpIu3_x2dX4SEWliiKE0W6U3SfL9_3HcB9UfjKKcUz5anJRMVEVqmwWbEBLTAjWF5Hi435snx-VY9TtMl56LQwzrlIPnMjPI3_8u3G7LBVNlYMAbXqQa_UKmm1un4Kz9FpRSeRTs410-PlYraaLJ6Qv1WO9s_-GKISa8js-H9vP4HhlxiPvHRl5hQOXHMGR998BAfgEUuiXokEOEciR9AgKibxiGSgGH-SxkW3JADVeOev5Y0nyTiDpE46aRJHnHg0Q7btEFaz6Woyz_YDFLI3TbcZTvjOtS15JaWhnNeqcFLkAVOEPNSSy6qy6HenlMRvnRvcvbjam1oUIpRxfg79ZtO4CyBeSFpYQ5njHB3ZtPOc1dR4dBblml7CAAO2fk8WGet9rK7-vnwNh5iTRNW6gf72Y-duodfa3V1M6icg76J_
link.rule.ids 310,311,782,786,791,792,798,23939,23940,25149,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB3RcgAuLC1ixweOpE1iO7HPpVURXZCaA7cq8SJxSSva_j8euyqLuHCJothRJI-seZ689wbgIctsaYSgkbCxiliZsKgU7rCiHVpIFEvSyltsDGf55E089dEm53GnhTHGePKZ6eCt_5evF2qDpbKuSBBQiwbsc5ZneVBr7SoqNEWvFRlkOimViezOpoOiNx0jgyvvbN_-0UbFZ5HB8f--fwLtLzkeed0lmlPYM_UZHH1zEmyBRTSJiiXiAB3xLEGFuJj4K9KBfARIaBi9Ig6q-pm_hheWBOsMEmrppA4scWLRDlmv2lAM-kVvGG1bKETvMl5H2OM7lTqnJecqprQSmeEsdajCRaLilJelRsc7ITjudqrw_GIqqyqWMZfI6Tk060VtLoBYxuNMqzgxlKInmzSWJlWsLHqLUhlfQgsXbL4MJhnz7Vpd_f34Hg6GxXg0Hz1PXq7hEOMTiFs30Fx_bMwtNFZ6c-cD_AnctKXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+25th+International+Conference+on+Software%2C+Telecommunications+and+Computer+Networks+%28SoftCOM%29&rft.atitle=Applying+the+multiclass+classification+methods+for+the+classification+of+online+social+network+friends&rft.au=Sever%2C+Nikolina&rft.au=Humski%2C+Luka&rft.au=Ilic%2C+Juraj&rft.au=Skocir%2C+Zoran&rft.date=2017-09-01&rft.pub=University+of+Split%2C+FESB&rft.eissn=1847-358X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.23919%2FSOFTCOM.2017.8115508&rft.externalDocID=8115508