A similarity measure for temporal pattern discovery in time series data generated by IoT
Internet of Things implicitly generates myriads of temporal data. Unlocking such temporal data becomes a huge concern. Discovery and prediction of repeating temporal patterns and understanding the underlying temporal trends is much more challenging in the case of time stamped temporal data. At prese...
Saved in:
Published in: | 2016 International Conference on Engineering & MIS (ICEMIS) pp. 1 - 4 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-09-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Internet of Things implicitly generates myriads of temporal data. Unlocking such temporal data becomes a huge concern. Discovery and prediction of repeating temporal patterns and understanding the underlying temporal trends is much more challenging in the case of time stamped temporal data. At present, existing approaches do not reveal seasonal patterns, emerging or diminishing patterns. Determining similar temporal patterns and unearthing eccentric patterns require an efficient dissimilarity measure. This research addresses the similarity measure for revealing similar temporal patterns from time series data generated by IoT. |
---|---|
AbstractList | Internet of Things implicitly generates myriads of temporal data. Unlocking such temporal data becomes a huge concern. Discovery and prediction of repeating temporal patterns and understanding the underlying temporal trends is much more challenging in the case of time stamped temporal data. At present, existing approaches do not reveal seasonal patterns, emerging or diminishing patterns. Determining similar temporal patterns and unearthing eccentric patterns require an efficient dissimilarity measure. This research addresses the similarity measure for revealing similar temporal patterns from time series data generated by IoT. |
Author | Kumar, Puligadda Veereswara Radhakrishna, Vangipuram Janaki, Vinjamuri Aljawarneh, Shadi |
Author_xml | – sequence: 1 givenname: Shadi surname: Aljawarneh fullname: Aljawarneh, Shadi email: saaljawarneh@just.edu.jo organization: Software Eng. Dept., JUST, Irbid, Jordan – sequence: 2 givenname: Vangipuram surname: Radhakrishna fullname: Radhakrishna, Vangipuram email: vrkrishna2014@gmail.com organization: Inf. Technol. Dept., VNR VJIET, Hyderabad, India – sequence: 3 givenname: Puligadda Veereswara surname: Kumar fullname: Kumar, Puligadda Veereswara email: pvkumar58@gmail.com organization: Dept. of CSE, Osmania Univ., Hyderabad, India – sequence: 4 givenname: Vinjamuri surname: Janaki fullname: Janaki, Vinjamuri email: janakicse@yahoo.com organization: Dept. of CSE, Vaagdevi Eng. Coll., Warangal, India |
BookMark | eNotz71OwzAUQGEjwQClT9DlvkCCHduxM1ZRgUitGMjAVt3E18hS_uQYpLw9A53O9knnid1P80SMHQTPheDVS1OfLs1nXnBR5sYoLbW-Y_vKWKF5xbU2lXhkX0dYwxgGjCFtMBKuP5HAzxESjcsccYAFU6I4gQtrP_9S3CBMkMJIsFIMtILDhPBNE0VM5KDboJnbZ_bgcVhpf-uOta-ntn7Pzh9vTX08Z6HiKSu0Q2mw7JCEtFYZ8l3Ro-NlX1knS1t6ScQVOaG89IX1XKvCopJGCqec3LHDPxuI6LrEMGLcrrdd-QfI9FAk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICEMIS.2016.7745355 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509055791 1509055797 |
EndPage | 4 |
ExternalDocumentID | 7745355 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-25da37a6bae138847efb2cad06c98d3686f3ee04ed14f3f28f05428a43731d4d3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:04 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-25da37a6bae138847efb2cad06c98d3686f3ee04ed14f3f28f05428a43731d4d3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_7745355 |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2016 International Conference on Engineering & MIS (ICEMIS) |
PublicationTitleAbbrev | ICEMIS |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.890115 |
Snippet | Internet of Things implicitly generates myriads of temporal data. Unlocking such temporal data becomes a huge concern. Discovery and prediction of repeating... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | association pattern seasonal pattern support bounds temporal data temporal trend time stamp |
Title | A similarity measure for temporal pattern discovery in time series data generated by IoT |
URI | https://ieeexplore.ieee.org/document/7745355 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVNpk5tSUq_uaFjldiSLEtjSROSpRSSIVuQpVMxNE5okiH_vpJtWgpduhlhkDgJ3tPp3TtCHnNmOUudpMZpS4XVmirnMxqgjjGN1msb8x3Tef66VC_jaJPz9F0Lg4i1-AwH8bN-y3cbe4ipsmGgKlnAxw7p5Fo1tVqtkVCa6OFsFFY-j2otOWj__NUypUaMydn_5jon_Z_SO3j7BpULcoJVjyyfYVeuy3AJDZwZ1k1aDwLdhNZZ6gO2tU9mBbHKNqoyj1BWEBvHQzxjuIMoBYX32mQ6kEwojjDbLPpkMRkvRlPatkSgpU72lGXO8NzIwmDKVQAW9AWzxiXSauW4VNJzxESgS4XnnikfGBlTJvoXpU44fkm61abCKwIm8eFqkWXSWCsKpYyxMjMilwV6I1J3TXoxKKttY3qxauNx8_fwLTmNcW_EV3eku_884D3p7Nzhod6mL9zBl1A |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVNOrRTW5LS797QsU5s2ZalsaQJCU1DIR6yBVk6FUPjhHwM-feVbJNS6NJNGIHNSfDend-9I-QpoSqkgWae1EJ5kRLC49rEnoU6SgUqI5SrdwynyWTGX_vOJuf50AuDiKX4DDtuWf7L10u1c6WyrqUqscXHBjmOo4QlVbdWbSUU-KI76tlvnzq9FuvUe38NTSkxY3D2v7edk_ZP8x18HGDlghxh0SKzF9jki9ymoZY1w6Iq7IElnFB7S33BqnTKLMD12Tpd5h7yAtzoeHC3DDfgxKDwWdpMW5oJ2R5Gy7RN0kE_7Q29eiiClwt_69FYyzCRLJMYhNxCC5qMKql9pgTXIePMhIh-hDqITGgoN5aTUS6dg1GgIx1ekmaxLPCKgPSNTS7imEmlooxzKRWLpQ1shkZGgb4mLReU-aqyvZjX8bj5-_EjORmm7-P5eDR5uyWn7gwqKdYdaW7XO7wnjY3ePZRH9g0A6Zqh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Engineering+%26+MIS+%28ICEMIS%29&rft.atitle=A+similarity+measure+for+temporal+pattern+discovery+in+time+series+data+generated+by+IoT&rft.au=Aljawarneh%2C+Shadi&rft.au=Radhakrishna%2C+Vangipuram&rft.au=Kumar%2C+Puligadda+Veereswara&rft.au=Janaki%2C+Vinjamuri&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICEMIS.2016.7745355&rft.externalDocID=7745355 |