A similarity measure for temporal pattern discovery in time series data generated by IoT

Internet of Things implicitly generates myriads of temporal data. Unlocking such temporal data becomes a huge concern. Discovery and prediction of repeating temporal patterns and understanding the underlying temporal trends is much more challenging in the case of time stamped temporal data. At prese...

Full description

Saved in:
Bibliographic Details
Published in:2016 International Conference on Engineering & MIS (ICEMIS) pp. 1 - 4
Main Authors: Aljawarneh, Shadi, Radhakrishna, Vangipuram, Kumar, Puligadda Veereswara, Janaki, Vinjamuri
Format: Conference Proceeding
Language:English
Published: IEEE 01-09-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Internet of Things implicitly generates myriads of temporal data. Unlocking such temporal data becomes a huge concern. Discovery and prediction of repeating temporal patterns and understanding the underlying temporal trends is much more challenging in the case of time stamped temporal data. At present, existing approaches do not reveal seasonal patterns, emerging or diminishing patterns. Determining similar temporal patterns and unearthing eccentric patterns require an efficient dissimilarity measure. This research addresses the similarity measure for revealing similar temporal patterns from time series data generated by IoT.
AbstractList Internet of Things implicitly generates myriads of temporal data. Unlocking such temporal data becomes a huge concern. Discovery and prediction of repeating temporal patterns and understanding the underlying temporal trends is much more challenging in the case of time stamped temporal data. At present, existing approaches do not reveal seasonal patterns, emerging or diminishing patterns. Determining similar temporal patterns and unearthing eccentric patterns require an efficient dissimilarity measure. This research addresses the similarity measure for revealing similar temporal patterns from time series data generated by IoT.
Author Kumar, Puligadda Veereswara
Radhakrishna, Vangipuram
Janaki, Vinjamuri
Aljawarneh, Shadi
Author_xml – sequence: 1
  givenname: Shadi
  surname: Aljawarneh
  fullname: Aljawarneh, Shadi
  email: saaljawarneh@just.edu.jo
  organization: Software Eng. Dept., JUST, Irbid, Jordan
– sequence: 2
  givenname: Vangipuram
  surname: Radhakrishna
  fullname: Radhakrishna, Vangipuram
  email: vrkrishna2014@gmail.com
  organization: Inf. Technol. Dept., VNR VJIET, Hyderabad, India
– sequence: 3
  givenname: Puligadda Veereswara
  surname: Kumar
  fullname: Kumar, Puligadda Veereswara
  email: pvkumar58@gmail.com
  organization: Dept. of CSE, Osmania Univ., Hyderabad, India
– sequence: 4
  givenname: Vinjamuri
  surname: Janaki
  fullname: Janaki, Vinjamuri
  email: janakicse@yahoo.com
  organization: Dept. of CSE, Vaagdevi Eng. Coll., Warangal, India
BookMark eNotz71OwzAUQGEjwQClT9DlvkCCHduxM1ZRgUitGMjAVt3E18hS_uQYpLw9A53O9knnid1P80SMHQTPheDVS1OfLs1nXnBR5sYoLbW-Y_vKWKF5xbU2lXhkX0dYwxgGjCFtMBKuP5HAzxESjcsccYAFU6I4gQtrP_9S3CBMkMJIsFIMtILDhPBNE0VM5KDboJnbZ_bgcVhpf-uOta-ntn7Pzh9vTX08Z6HiKSu0Q2mw7JCEtFYZ8l3Ro-NlX1knS1t6ScQVOaG89IX1XKvCopJGCqec3LHDPxuI6LrEMGLcrrdd-QfI9FAk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICEMIS.2016.7745355
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509055791
1509055797
EndPage 4
ExternalDocumentID 7745355
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-25da37a6bae138847efb2cad06c98d3686f3ee04ed14f3f28f05428a43731d4d3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:04 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-25da37a6bae138847efb2cad06c98d3686f3ee04ed14f3f28f05428a43731d4d3
PageCount 4
ParticipantIDs ieee_primary_7745355
PublicationCentury 2000
PublicationDate 2016-Sept.
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle 2016 International Conference on Engineering & MIS (ICEMIS)
PublicationTitleAbbrev ICEMIS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.890115
Snippet Internet of Things implicitly generates myriads of temporal data. Unlocking such temporal data becomes a huge concern. Discovery and prediction of repeating...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms association pattern
seasonal pattern
support bounds
temporal data
temporal trend
time stamp
Title A similarity measure for temporal pattern discovery in time series data generated by IoT
URI https://ieeexplore.ieee.org/document/7745355
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVNpk5tSUq_uaFjldiSLEtjSROSpRSSIVuQpVMxNE5okiH_vpJtWgpduhlhkDgJ3tPp3TtCHnNmOUudpMZpS4XVmirnMxqgjjGN1msb8x3Tef66VC_jaJPz9F0Lg4i1-AwH8bN-y3cbe4ipsmGgKlnAxw7p5Fo1tVqtkVCa6OFsFFY-j2otOWj__NUypUaMydn_5jon_Z_SO3j7BpULcoJVjyyfYVeuy3AJDZwZ1k1aDwLdhNZZ6gO2tU9mBbHKNqoyj1BWEBvHQzxjuIMoBYX32mQ6kEwojjDbLPpkMRkvRlPatkSgpU72lGXO8NzIwmDKVQAW9AWzxiXSauW4VNJzxESgS4XnnikfGBlTJvoXpU44fkm61abCKwIm8eFqkWXSWCsKpYyxMjMilwV6I1J3TXoxKKttY3qxauNx8_fwLTmNcW_EV3eku_884D3p7Nzhod6mL9zBl1A
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVNOrRTW5LS797QsU5s2ZalsaQJCU1DIR6yBVk6FUPjhHwM-feVbJNS6NJNGIHNSfDend-9I-QpoSqkgWae1EJ5kRLC49rEnoU6SgUqI5SrdwynyWTGX_vOJuf50AuDiKX4DDtuWf7L10u1c6WyrqUqscXHBjmOo4QlVbdWbSUU-KI76tlvnzq9FuvUe38NTSkxY3D2v7edk_ZP8x18HGDlghxh0SKzF9jki9ymoZY1w6Iq7IElnFB7S33BqnTKLMD12Tpd5h7yAtzoeHC3DDfgxKDwWdpMW5oJ2R5Gy7RN0kE_7Q29eiiClwt_69FYyzCRLJMYhNxCC5qMKql9pgTXIePMhIh-hDqITGgoN5aTUS6dg1GgIx1ekmaxLPCKgPSNTS7imEmlooxzKRWLpQ1shkZGgb4mLReU-aqyvZjX8bj5-_EjORmm7-P5eDR5uyWn7gwqKdYdaW7XO7wnjY3ePZRH9g0A6Zqh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Engineering+%26+MIS+%28ICEMIS%29&rft.atitle=A+similarity+measure+for+temporal+pattern+discovery+in+time+series+data+generated+by+IoT&rft.au=Aljawarneh%2C+Shadi&rft.au=Radhakrishna%2C+Vangipuram&rft.au=Kumar%2C+Puligadda+Veereswara&rft.au=Janaki%2C+Vinjamuri&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICEMIS.2016.7745355&rft.externalDocID=7745355