Utilizing Genetic Algorithms for Generating Critical Scenarios for Testing Autonomous Driving Functions
Finding critical scenarios is essential in testing autonomous driving and automated driving functions. Such scenarios describe a sequence of interactions between the autonomous vehicle or the vehicle equipped with automated driving functions and the environment, i.e., other cars, pedestrians, and th...
Saved in:
Published in: | 2024 IEEE International Conference on Artificial Intelligence Testing (AITest) pp. 73 - 80 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
15-07-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Finding critical scenarios is essential in testing autonomous driving and automated driving functions. Such scenarios describe a sequence of interactions between the autonomous vehicle or the vehicle equipped with automated driving functions and the environment, i.e., other cars, pedestrians, and the current road conditions, which challenge the system we want to test. In this paper, we present a search-based testing solution utilizing genetic algorithms for test generation coupled with a traffic simulator. As a fitness function, we rely on the amount of emergency braking required to prevent crashes. In addition, we compare two types of hyperparameter tuning. One type uses combinations of hyperparameters obtained from previous papers. The other is based on a design of experiment method. We show that the genetic algorithm using the design of experiments method for hyperparameter tuning outperforms the other implementation in terms of criticality (i.e., the time of emergency braking) and diversity. Furthermore, we show that both genetic algorithm implementations are superior to pure random testing in the application context of autonomous and automated driving. |
---|---|
AbstractList | Finding critical scenarios is essential in testing autonomous driving and automated driving functions. Such scenarios describe a sequence of interactions between the autonomous vehicle or the vehicle equipped with automated driving functions and the environment, i.e., other cars, pedestrians, and the current road conditions, which challenge the system we want to test. In this paper, we present a search-based testing solution utilizing genetic algorithms for test generation coupled with a traffic simulator. As a fitness function, we rely on the amount of emergency braking required to prevent crashes. In addition, we compare two types of hyperparameter tuning. One type uses combinations of hyperparameters obtained from previous papers. The other is based on a design of experiment method. We show that the genetic algorithm using the design of experiments method for hyperparameter tuning outperforms the other implementation in terms of criticality (i.e., the time of emergency braking) and diversity. Furthermore, we show that both genetic algorithm implementations are superior to pure random testing in the application context of autonomous and automated driving. |
Author | Kluck, Florian Sumann, Daniel Wotawa, Franz |
Author_xml | – sequence: 1 givenname: Florian surname: Kluck fullname: Kluck, Florian email: florian.klueck@avl.com organization: AVL List GmbH,Graz,Austria – sequence: 2 givenname: Daniel surname: Sumann fullname: Sumann, Daniel email: daniel.sumann@outlook.com organization: Graz University of Technology,Graz,Austria – sequence: 3 givenname: Franz surname: Wotawa fullname: Wotawa, Franz email: wotawa@ist.tugraz.at organization: Graz University of Technology,Institute of Software Technology CD Laboratory QAMCAS,Graz,Austria |
BookMark | eNotj9FKAzEQRaMoqLV_ILI_sHUm2WySx6XaWij4YH0u6W5SI9tEklTQr3fX-jTMmcPlzg258MEbQu4RZoigHprVxqRcU1nDjAKtZgCA4oxMlVCScWA1B16dk2s6bCXjNVyRaUofg8YooqDymuzfsuvdj_P7Ymm8ya4tmn4fosvvh1TYEP9w1Hk05gN2re6L19Z4HV04GWOL8dwcc_DhEI6peIzua0SLo2-zCz7dkkur-2Sm_3NCNounzfy5XL8sV_NmXTouVIlW7nZI2U4LzbCjDIQcXjGCirZTFXJurZWVkp0GwStKKUPDLdSm64xSik3I3SnWGWO2n9EddPzeItSSo1TsF0jjW9Q |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/AITest62860.2024.00017 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350365054 |
EISSN | 2835-3560 |
EndPage | 80 |
ExternalDocumentID | 10685189 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Foundation for Research, Technology and Development funderid: 10.13039/100010132 |
GroupedDBID | 6IE 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i579-1f8bb123ba7a31d23078983e727cd94155fff8498da075422231e5f06edde9993 |
IEDL.DBID | RIE |
IngestDate | Wed Oct 02 05:56:44 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i579-1f8bb123ba7a31d23078983e727cd94155fff8498da075422231e5f06edde9993 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10685189 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-15 |
PublicationDateYYYYMMDD | 2024-07-15 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE International Conference on Artificial Intelligence Testing (AITest) |
PublicationTitleAbbrev | AITEST |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211728 |
Score | 1.9287307 |
Snippet | Finding critical scenarios is essential in testing autonomous driving and automated driving functions. Such scenarios describe a sequence of interactions... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 73 |
SubjectTerms | autonomous driving testing Autonomous vehicles critical scenario generation Design methodology Genetic algorithms Roads Search problems search-based testing Tuning Vehicle dynamics |
Title | Utilizing Genetic Algorithms for Generating Critical Scenarios for Testing Autonomous Driving Functions |
URI | https://ieeexplore.ieee.org/document/10685189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoJyZAFPEtD6yGOG5ie6xoq7IgpBaJrXLsS4lUEtQ2C7-eu6QtYmBgiBQ5kRKdHb93l3t3jN1ZdBGyAE5EwSrR18oKhzgrrMOd0CuNrJniHZOpfn4zwxGVyRF7LQwANMlncE-nzb_8UPmaQmX4hadIEIztsI62phVr7QMqCl0ZHZutClhG9mHwNMOdlbSXETqCMZXJjuTvNioNioyP_vn8Y9b70ePxlz3SnLADKE_Z4nVTLIsvHOBUOxoXAB8sFxU6--8fa45clLclpSmvme86GvCphxLd46q9g96cLg_qDYkbqnrNh6uCYgx8jIDXrMkem41Hs8eJ2LZNEEWirZC5yTLEo8xpp2SgRG9jjQIkKj5Y4g95npu-NcFF1P4W-YGEJI9SwJ0O6aI6Y92yKuGccYQ361SKh0LalMWZ90miYkjRzsoHecF6ZKT5Z1sYY76zz-Uf41fskOaBQqMyuWbdzaqGG9ZZh_q2mctv9Ayf1g |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoGWACRBHfeGA1JHET22NFW7WiVEgNElvl2E6J1CaobRZ-PXdJW8TAwBApcjJYtnPv3eXeHSH3ClyExDrNPKs4awuumAacZUqDJTRcAGvGeMdgIsbvstvDMjlsp4VxzlXJZ-4Bb6t_-bYwJYbK4AuPgCBI1SD7YVtEopZr7UIqHJwZEciNDtj31GNnGINtRfWlB65ggIWyPf93I5UKR_pH_5zBMWn9KPLo6w5rTsiey0_J7G2dzbMvGKBYPRqOAO3MZwW4-x-LFQU2Suui0pjZTLc9DejEuBwc5KJ-A2eOjzvlGuUNRbmi3WWGUQbaB8irTmWLxP1e_DRgm8YJLAuFYn4qkwQQKdFCc99iqrdUkjugKsYqZBBpmsq2klZ72AAXGILvwtSLHNg6IIz8jDTzInfnhALAKc0juDgQpyRIjAlDHrgI1pkb61-QFi7S9LMujTHdrs_lH-N35GAQv4ymo-H4-Yoc4p5goNQPr0lzvSzdDWmsbHlb7es3jBOjJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Artificial+Intelligence+Testing+%28AITest%29&rft.atitle=Utilizing+Genetic+Algorithms+for+Generating+Critical+Scenarios+for+Testing+Autonomous+Driving+Functions&rft.au=Kluck%2C+Florian&rft.au=Sumann%2C+Daniel&rft.au=Wotawa%2C+Franz&rft.date=2024-07-15&rft.pub=IEEE&rft.eissn=2835-3560&rft.spage=73&rft.epage=80&rft_id=info:doi/10.1109%2FAITest62860.2024.00017&rft.externalDocID=10685189 |