Utilizing Genetic Algorithms for Generating Critical Scenarios for Testing Autonomous Driving Functions

Finding critical scenarios is essential in testing autonomous driving and automated driving functions. Such scenarios describe a sequence of interactions between the autonomous vehicle or the vehicle equipped with automated driving functions and the environment, i.e., other cars, pedestrians, and th...

Full description

Saved in:
Bibliographic Details
Published in:2024 IEEE International Conference on Artificial Intelligence Testing (AITest) pp. 73 - 80
Main Authors: Kluck, Florian, Sumann, Daniel, Wotawa, Franz
Format: Conference Proceeding
Language:English
Published: IEEE 15-07-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Finding critical scenarios is essential in testing autonomous driving and automated driving functions. Such scenarios describe a sequence of interactions between the autonomous vehicle or the vehicle equipped with automated driving functions and the environment, i.e., other cars, pedestrians, and the current road conditions, which challenge the system we want to test. In this paper, we present a search-based testing solution utilizing genetic algorithms for test generation coupled with a traffic simulator. As a fitness function, we rely on the amount of emergency braking required to prevent crashes. In addition, we compare two types of hyperparameter tuning. One type uses combinations of hyperparameters obtained from previous papers. The other is based on a design of experiment method. We show that the genetic algorithm using the design of experiments method for hyperparameter tuning outperforms the other implementation in terms of criticality (i.e., the time of emergency braking) and diversity. Furthermore, we show that both genetic algorithm implementations are superior to pure random testing in the application context of autonomous and automated driving.
AbstractList Finding critical scenarios is essential in testing autonomous driving and automated driving functions. Such scenarios describe a sequence of interactions between the autonomous vehicle or the vehicle equipped with automated driving functions and the environment, i.e., other cars, pedestrians, and the current road conditions, which challenge the system we want to test. In this paper, we present a search-based testing solution utilizing genetic algorithms for test generation coupled with a traffic simulator. As a fitness function, we rely on the amount of emergency braking required to prevent crashes. In addition, we compare two types of hyperparameter tuning. One type uses combinations of hyperparameters obtained from previous papers. The other is based on a design of experiment method. We show that the genetic algorithm using the design of experiments method for hyperparameter tuning outperforms the other implementation in terms of criticality (i.e., the time of emergency braking) and diversity. Furthermore, we show that both genetic algorithm implementations are superior to pure random testing in the application context of autonomous and automated driving.
Author Kluck, Florian
Sumann, Daniel
Wotawa, Franz
Author_xml – sequence: 1
  givenname: Florian
  surname: Kluck
  fullname: Kluck, Florian
  email: florian.klueck@avl.com
  organization: AVL List GmbH,Graz,Austria
– sequence: 2
  givenname: Daniel
  surname: Sumann
  fullname: Sumann, Daniel
  email: daniel.sumann@outlook.com
  organization: Graz University of Technology,Graz,Austria
– sequence: 3
  givenname: Franz
  surname: Wotawa
  fullname: Wotawa, Franz
  email: wotawa@ist.tugraz.at
  organization: Graz University of Technology,Institute of Software Technology CD Laboratory QAMCAS,Graz,Austria
BookMark eNotj9FKAzEQRaMoqLV_ILI_sHUm2WySx6XaWij4YH0u6W5SI9tEklTQr3fX-jTMmcPlzg258MEbQu4RZoigHprVxqRcU1nDjAKtZgCA4oxMlVCScWA1B16dk2s6bCXjNVyRaUofg8YooqDymuzfsuvdj_P7Ymm8ya4tmn4fosvvh1TYEP9w1Hk05gN2re6L19Z4HV04GWOL8dwcc_DhEI6peIzua0SLo2-zCz7dkkur-2Sm_3NCNounzfy5XL8sV_NmXTouVIlW7nZI2U4LzbCjDIQcXjGCirZTFXJurZWVkp0GwStKKUPDLdSm64xSik3I3SnWGWO2n9EddPzeItSSo1TsF0jjW9Q
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AITest62860.2024.00017
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350365054
EISSN 2835-3560
EndPage 80
ExternalDocumentID 10685189
Genre orig-research
GrantInformation_xml – fundername: National Foundation for Research, Technology and Development
  funderid: 10.13039/100010132
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i579-1f8bb123ba7a31d23078983e727cd94155fff8498da075422231e5f06edde9993
IEDL.DBID RIE
IngestDate Wed Oct 02 05:56:44 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i579-1f8bb123ba7a31d23078983e727cd94155fff8498da075422231e5f06edde9993
PageCount 8
ParticipantIDs ieee_primary_10685189
PublicationCentury 2000
PublicationDate 2024-July-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-15
  day: 15
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Artificial Intelligence Testing (AITest)
PublicationTitleAbbrev AITEST
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211728
Score 1.9287307
Snippet Finding critical scenarios is essential in testing autonomous driving and automated driving functions. Such scenarios describe a sequence of interactions...
SourceID ieee
SourceType Publisher
StartPage 73
SubjectTerms autonomous driving testing
Autonomous vehicles
critical scenario generation
Design methodology
Genetic algorithms
Roads
Search problems
search-based testing
Tuning
Vehicle dynamics
Title Utilizing Genetic Algorithms for Generating Critical Scenarios for Testing Autonomous Driving Functions
URI https://ieeexplore.ieee.org/document/10685189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoJyZAFPEtD6yGOG5ie6xoq7IgpBaJrXLsS4lUEtQ2C7-eu6QtYmBgiBQ5kRKdHb93l3t3jN1ZdBGyAE5EwSrR18oKhzgrrMOd0CuNrJniHZOpfn4zwxGVyRF7LQwANMlncE-nzb_8UPmaQmX4hadIEIztsI62phVr7QMqCl0ZHZutClhG9mHwNMOdlbSXETqCMZXJjuTvNioNioyP_vn8Y9b70ePxlz3SnLADKE_Z4nVTLIsvHOBUOxoXAB8sFxU6--8fa45clLclpSmvme86GvCphxLd46q9g96cLg_qDYkbqnrNh6uCYgx8jIDXrMkem41Hs8eJ2LZNEEWirZC5yTLEo8xpp2SgRG9jjQIkKj5Y4g95npu-NcFF1P4W-YGEJI9SwJ0O6aI6Y92yKuGccYQ361SKh0LalMWZ90miYkjRzsoHecF6ZKT5Z1sYY76zz-Uf41fskOaBQqMyuWbdzaqGG9ZZh_q2mctv9Ayf1g
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoGWACRBHfeGA1JHET22NFW7WiVEgNElvl2E6J1CaobRZ-PXdJW8TAwBApcjJYtnPv3eXeHSH3ClyExDrNPKs4awuumAacZUqDJTRcAGvGeMdgIsbvstvDMjlsp4VxzlXJZ-4Bb6t_-bYwJYbK4AuPgCBI1SD7YVtEopZr7UIqHJwZEciNDtj31GNnGINtRfWlB65ggIWyPf93I5UKR_pH_5zBMWn9KPLo6w5rTsiey0_J7G2dzbMvGKBYPRqOAO3MZwW4-x-LFQU2Suui0pjZTLc9DejEuBwc5KJ-A2eOjzvlGuUNRbmi3WWGUQbaB8irTmWLxP1e_DRgm8YJLAuFYn4qkwQQKdFCc99iqrdUkjugKsYqZBBpmsq2klZ72AAXGILvwtSLHNg6IIz8jDTzInfnhALAKc0juDgQpyRIjAlDHrgI1pkb61-QFi7S9LMujTHdrs_lH-N35GAQv4ymo-H4-Yoc4p5goNQPr0lzvSzdDWmsbHlb7es3jBOjJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Artificial+Intelligence+Testing+%28AITest%29&rft.atitle=Utilizing+Genetic+Algorithms+for+Generating+Critical+Scenarios+for+Testing+Autonomous+Driving+Functions&rft.au=Kluck%2C+Florian&rft.au=Sumann%2C+Daniel&rft.au=Wotawa%2C+Franz&rft.date=2024-07-15&rft.pub=IEEE&rft.eissn=2835-3560&rft.spage=73&rft.epage=80&rft_id=info:doi/10.1109%2FAITest62860.2024.00017&rft.externalDocID=10685189