Accelerator-Aware Computation Offloading Under Timing Constraints

The rise of chiplets in personal and high performance computing is mirrored in System on Chip (SOC) in mobile devices. Both paradigms allow vendors and designers to integrate dedicated circuitry for accelerating computation. Implementations like cryptographic or vector engines are well known, and no...

Full description

Saved in:
Bibliographic Details
Published in:2024 International Conference on Computing, Networking and Communications (ICNC) pp. 706 - 710
Main Authors: Latzko, Vincent, Vielhaus, Christian, Mehrabi, Mahshid, Fitzek, Frank H. P.
Format: Conference Proceeding
Language:English
Published: IEEE 19-02-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rise of chiplets in personal and high performance computing is mirrored in System on Chip (SOC) in mobile devices. Both paradigms allow vendors and designers to integrate dedicated circuitry for accelerating computation. Implementations like cryptographic or vector engines are well known, and nowadays Machine Learning (ML) blocks are often included to accelerate Deep Neural Network (DNN) inference. The shift toward diverse device architectures, as exemplified by RISC-V, is poised to gain momentum. The widespread integration of accelerators in smartphones, tablets, SoCs, and dedicated server systems, is opening up exciting new innovations. In this short paper we present computation offloading for specific workloads in the framework of Multi-Access Edge Computing (MEC) and energy optimisation. We honour inter-task dependency through use of a Directed Acyclic Graph (DAG). Our system model with multiple mobile users, Device-to-Device (D2D) links between User Equipments (UEs), and edge servers enables computational and communication cooperation. The system's energy efficiency is significantly improved by introducing accelerators to the UEs and the MEC. We study the capabilities of the devices (accelerators) and propose an effective solution.
AbstractList The rise of chiplets in personal and high performance computing is mirrored in System on Chip (SOC) in mobile devices. Both paradigms allow vendors and designers to integrate dedicated circuitry for accelerating computation. Implementations like cryptographic or vector engines are well known, and nowadays Machine Learning (ML) blocks are often included to accelerate Deep Neural Network (DNN) inference. The shift toward diverse device architectures, as exemplified by RISC-V, is poised to gain momentum. The widespread integration of accelerators in smartphones, tablets, SoCs, and dedicated server systems, is opening up exciting new innovations. In this short paper we present computation offloading for specific workloads in the framework of Multi-Access Edge Computing (MEC) and energy optimisation. We honour inter-task dependency through use of a Directed Acyclic Graph (DAG). Our system model with multiple mobile users, Device-to-Device (D2D) links between User Equipments (UEs), and edge servers enables computational and communication cooperation. The system's energy efficiency is significantly improved by introducing accelerators to the UEs and the MEC. We study the capabilities of the devices (accelerators) and propose an effective solution.
Author Fitzek, Frank H. P.
Latzko, Vincent
Mehrabi, Mahshid
Vielhaus, Christian
Author_xml – sequence: 1
  givenname: Vincent
  surname: Latzko
  fullname: Latzko, Vincent
  organization: Technische Universität Dresden,Deutsche Telekom Chair of Communication Networks,Dresden,Germany,01062
– sequence: 2
  givenname: Christian
  surname: Vielhaus
  fullname: Vielhaus, Christian
  organization: Technische Universität Dresden,Deutsche Telekom Chair of Communication Networks,Dresden,Germany,01062
– sequence: 3
  givenname: Mahshid
  surname: Mehrabi
  fullname: Mehrabi, Mahshid
  organization: Barkhausen Institute,Dresden,Germany,01062
– sequence: 4
  givenname: Frank H. P.
  surname: Fitzek
  fullname: Fitzek, Frank H. P.
  organization: Technische Universität Dresden,Deutsche Telekom Chair of Communication Networks,Dresden,Germany,01062
BookMark eNo1j8tKxDAARaMoOI79A8H-QGvej2UJOg4MzqauhzQPCbTJkFbEv7eiri5ncznnFlylnDwADwi2CEH1uNevmimpeIshpi2CjHHI6QWolFCSMEgEVEpcgg2mgjSCSXYDqnmOA6SYciUQ2oCus9aPvpgll6b7NMXXOk_nj8UsMaf6GMKYjYvpvX5Lzpe6j9MP6JzmpZiYlvkOXAczzr762y3on596_dIcjru97g5NpIo1gWCJlQurmseIsmAdt8xLzlUYMA9ukIZajge-ynJG3VrjGXIBGycxtmQL7n9vo_f-dC5xMuXr9B9NvgF5k03Z
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICNC59896.2024.10556064
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350370997
EISSN 2473-7585
EndPage 710
ExternalDocumentID 10556064
Genre orig-research
GrantInformation_xml – fundername: European Union
  grantid: 16MEE0173
  funderid: 10.13039/501100000780
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i495-f32829df979e2145fcd6c5e8669fb26fdb8a4c62b6247654d055e51df2ad822c3
IEDL.DBID RIE
IngestDate Wed Jul 03 05:40:23 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i495-f32829df979e2145fcd6c5e8669fb26fdb8a4c62b6247654d055e51df2ad822c3
PageCount 5
ParticipantIDs ieee_primary_10556064
PublicationCentury 2000
PublicationDate 2024-Feb.-19
PublicationDateYYYYMMDD 2024-02-19
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2024 International Conference on Computing, Networking and Communications (ICNC)
PublicationTitleAbbrev ICNC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib042469711
ssib055713110
ssib048504775
Score 1.9127725
Snippet The rise of chiplets in personal and high performance computing is mirrored in System on Chip (SOC) in mobile devices. Both paradigms allow vendors and...
SourceID ieee
SourceType Publisher
StartPage 706
SubjectTerms Artificial neural networks
Computation Offloading
Heterogeneous Computing
Machine learning
Multi-access edge computing
System-on-chip
Technological innovation
Timing
Vectors
Title Accelerator-Aware Computation Offloading Under Timing Constraints
URI https://ieeexplore.ieee.org/document/10556064
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELVIKipALOKWC1one_gsVyFRaAISW9BF6wshoQTlEL_PjHOJgoJuZWkt38_jeTOPkAdfaatNbmEjwXYDvDWs1T4yK0zlCmEr6dBQHL-qyZt-HGKaHLaPhQkhJPJZ6OFn8uX7uVvjU1k_iTkChnZIRxm9CdbaLR5egqGnDouVa5FzdcBGIRRmlsm3HK8iN_2nwWQgjDbIVCh5b1f7L52VBDOjk3828JRkh4A9-rKHojNyFGbnpK6dA1BJfnRWf7eLQDcaDmky6HOMn_PEoKdJ_Ig2KPD1TlHCMwlHrJYZaUbDZjBmW8UE9gGGDosV-kV9NMoEzEAenZdOBC2libaU0VvdcidLK0uupOAemhtE4WPZergouOqCdGfzWbgktOKCt8JKuPHlnAv4LwczOopg4fjUsbgiGXZ_-rXJiTHd9fz6j_IbcoyDjHznwtyS7mqxDneks_Tr-zSNP_eXmMc
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxEB2RUEAFiCButqB1sofHRxmFRIkIAYkt6KL1hZBQgnKI38d2LlFQ0K0sreX7eTxv5gHcm0IoIVPlN5Lfbh5vJamEcUShLHSGqmA6GIr9Vz56Ew_dkCaHbGNhrLWRfGab4TP68s1UL8NTWSuKOXoMrcE-Us74Klxrs3xo7k09vluuVGBK-Q4dEXnILZOuWV5ZKluDzqiDUsjAVchpc1P_L6WVCDS9o3828Rgau5C95GULRiewZyen0G5r7WEletJJ-7ua2WSl4hCnI3l27nMaOfRJlD9KyiDx9Z4EEc8oHbGYN6DsdctOn6w1E8iHN3WIK4Jn1DjJpQ05yJ02TKMVjEmncuaMEhXVLFcs9wOI1PjmWsyMyyvjrwq6OIP6ZDqx55AUFGmFivk7X0op-v9Sb0g7tMofoMJlF9AI3R9_rbJijDc9v_yj_A4O-uXTcDwcjB6v4DAMeGA_Z_Ia6ovZ0t5AbW6Wt3FKfwA5fZwY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Computing%2C+Networking+and+Communications+%28ICNC%29&rft.atitle=Accelerator-Aware+Computation+Offloading+Under+Timing+Constraints&rft.au=Latzko%2C+Vincent&rft.au=Vielhaus%2C+Christian&rft.au=Mehrabi%2C+Mahshid&rft.au=Fitzek%2C+Frank+H.+P.&rft.date=2024-02-19&rft.pub=IEEE&rft.eissn=2473-7585&rft.spage=706&rft.epage=710&rft_id=info:doi/10.1109%2FICNC59896.2024.10556064&rft.externalDocID=10556064