A Deep Learning Approach for Blood Cells Classification Using CNN and Transfer Learning Models
Blood cell image classification stands as a cornerstone in modern healthcare, playing a pivotal role in the diagnosis and treatment of a wide array of medical conditions. The precise and efficient categorization of blood cells holds the potential to exert a profound influence on patient care and med...
Saved in:
Published in: | 2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES) pp. 1 - 6 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
03-05-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Blood cell image classification stands as a cornerstone in modern healthcare, playing a pivotal role in the diagnosis and treatment of a wide array of medical conditions. The precise and efficient categorization of blood cells holds the potential to exert a profound influence on patient care and medical research alike. The traditional methods faced challenges with accuracy and robustness due to the complexity and variability of blood cell images. This work, propose a comprehensive approach for the classification of four types of blood cells: Eosinophils, Lymphocytes, Monocytes, and Neutrophils using Convolutional Neural Networks (CNNs) and transfer learning models. We employ four state-of-the-art pre-trained models: Xception, VGG16, MobileNetV2, and ResNet50V2. The primary objective is to accurately classify blood cell types, crucial for various medical diagnostic applications. Our experiments show's promising results, with the MobileNetV2 model achieved an impressive Training Accuracy of 98.22%, Validation Accuracy 86.89%, and Test Accuracy of 87.00%. |
---|---|
AbstractList | Blood cell image classification stands as a cornerstone in modern healthcare, playing a pivotal role in the diagnosis and treatment of a wide array of medical conditions. The precise and efficient categorization of blood cells holds the potential to exert a profound influence on patient care and medical research alike. The traditional methods faced challenges with accuracy and robustness due to the complexity and variability of blood cell images. This work, propose a comprehensive approach for the classification of four types of blood cells: Eosinophils, Lymphocytes, Monocytes, and Neutrophils using Convolutional Neural Networks (CNNs) and transfer learning models. We employ four state-of-the-art pre-trained models: Xception, VGG16, MobileNetV2, and ResNet50V2. The primary objective is to accurately classify blood cell types, crucial for various medical diagnostic applications. Our experiments show's promising results, with the MobileNetV2 model achieved an impressive Training Accuracy of 98.22%, Validation Accuracy 86.89%, and Test Accuracy of 87.00%. |
Author | Karegowda, Asha Gowda Aishwarya Leena Rani, A |
Author_xml | – sequence: 1 givenname: Asha Gowda surname: Karegowda fullname: Karegowda, Asha Gowda email: asha_gowda@sit.ac.in organization: Siddaganga Institute of Technology,Dept of MCA,Tumkur,Karnataka,India – sequence: 2 givenname: A surname: Leena Rani fullname: Leena Rani, A email: leenaraania1@gmail.com organization: Siddaganga Institute of Technology,Dept of MCA,Tumkur,Karnataka,India – sequence: 3 surname: Aishwarya fullname: Aishwarya email: aishwarya.1si21mc003@gmail.com organization: Siddaganga Institute of Technology,Dept of MCA,Tumkur,Karnataka,India |
BookMark | eNpFj71OwzAYAI0EA5S-AYN5gBT_JvYYQimVQhkSVqovyWewFOzIZuHtEQLEdMvppLsgpyEGJOSasw3nzN7sm67bdqWQldwIJtSGM11ypewJWdvKGqmZLBVT7Jy81PQOcaEtQgo-vNJ6WVKE8Y26mOjtHONEG5znTJsZcvbOj_DhY6DP-dtuDgcKYaJ9gpAdpv_OY5xwzpfkzMGccf3LFenvt33zULRPu31Tt4VXVheIBgUYybVDBlIPnA-GD06NE0MrKjEpZZwZK9CaaZhKLQftjAPkHCyMckWufrIeEY9L8u-QPo9_1_ILb1dSgg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSSES62373.2024.10561449 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350364040 |
EndPage | 6 |
ExternalDocumentID | 10561449 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i495-ee8e2a8315fe0a35b11b81bf4cd0e9272d448f8c7a5505ad653b5f8fae11a9ac3 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 03 05:40:16 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i495-ee8e2a8315fe0a35b11b81bf4cd0e9272d448f8c7a5505ad653b5f8fae11a9ac3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10561449 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-3 |
PublicationDateYYYYMMDD | 2024-05-03 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-3 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | 2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES) |
PublicationTitleAbbrev | ICSSES |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9206266 |
Snippet | Blood cell image classification stands as a cornerstone in modern healthcare, playing a pivotal role in the diagnosis and treatment of a wide array of medical... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Blood Cells Classification CNN Convolutional neural networks Medical conditions Mobile applications MobileNetV2 ResNet50V2 Robustness Training Transfer learning VGG16 Xception |
Title | A Deep Learning Approach for Blood Cells Classification Using CNN and Transfer Learning Models |
URI | https://ieeexplore.ieee.org/document/10561449 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhEJ3YHownNdb4HUy80i6w24Vj3bapl8akPXiyYWEwJs22se7_F-i2jQcP3gghkAyBmQdv3gA8acx9YJtIWmYSaZpZRZWRmiKKvlJWpWhDcvJklk_f5HAUZHLoPhcGESP5DLuhGf_y7crU4amsx6JuZapa0MqV3CZrHcNjo5vZeylm_g7y_jwXHvjxtLsb_6tySnQc49N_LnkGnUMKHnndO5dzOMLqAt4HZIi4Jo0o6gcZNIrgxIee5Dlw0EmBy-WGxFqXgQUUDU8iMYAU0ynRlSXRP_lFDvOEimjLTQfm49G8mNCmQAL99LjG21Mi11KwzGGiRVYyVvoo1KXGJqh4zq3HXk6aXAcYom0_E2XmpNPImFbaiEtoV6sKr4BwwxMnwnksPb5A5qNCf_RN4pzipbDsGjrBNov1VgJjsTPLzR_9t3ASdiAyA8UdtL-_aryH1sbWD3HXfgAfVplL |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0IJupJjRi_rYnXwna7y7ZHXCAQcWMCB0-S7nZqTMhCRP6_bVkgHjx4a5q0TaZpZ1775g3Ao8LEBraBoHkskEaxllQWQlFE3pZSywi1S04ejJPsTXR7TiaHbnNhENGTz7Dpmv4vX8-LlXsqazGvWxnJGuzHUdJO1ulaB_BQKWe2hunY3kLWoyfcQr8wam5G_Kqd4l1H__ifi55AY5eER1637uUU9rA8g_cO6SIuSCWL-kE6lSY4scEneXIsdJLibLYkvtql4wF50xNPDSBplhFVauI9lF1kN4-riTZbNmDS703SAa1KJNBPi2ysRQWGSnAWGwwUj3PGchuHmqjQAcowCbVFX0YUiXJAROl2zPPYCKOQMSVVwc-hXs5LvAASFmFguDuRuUUYyGxcaA9_ERgjw5xrdgkNZ5vpYi2CMd2Y5eqP_ns4HExeRtPRMHu-hiO3G54nyG-g_v21wluoLfXqzu_gD2ISnJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Smart+Systems+for+applications+in+Electrical+Sciences+%28ICSSES%29&rft.atitle=A+Deep+Learning+Approach+for+Blood+Cells+Classification+Using+CNN+and+Transfer+Learning+Models&rft.au=Karegowda%2C+Asha+Gowda&rft.au=Leena+Rani%2C+A&rft.au=Aishwarya&rft.date=2024-05-03&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICSSES62373.2024.10561449&rft.externalDocID=10561449 |