A Deep Learning Approach for Blood Cells Classification Using CNN and Transfer Learning Models

Blood cell image classification stands as a cornerstone in modern healthcare, playing a pivotal role in the diagnosis and treatment of a wide array of medical conditions. The precise and efficient categorization of blood cells holds the potential to exert a profound influence on patient care and med...

Full description

Saved in:
Bibliographic Details
Published in:2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES) pp. 1 - 6
Main Authors: Karegowda, Asha Gowda, Leena Rani, A, Aishwarya
Format: Conference Proceeding
Language:English
Published: IEEE 03-05-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Blood cell image classification stands as a cornerstone in modern healthcare, playing a pivotal role in the diagnosis and treatment of a wide array of medical conditions. The precise and efficient categorization of blood cells holds the potential to exert a profound influence on patient care and medical research alike. The traditional methods faced challenges with accuracy and robustness due to the complexity and variability of blood cell images. This work, propose a comprehensive approach for the classification of four types of blood cells: Eosinophils, Lymphocytes, Monocytes, and Neutrophils using Convolutional Neural Networks (CNNs) and transfer learning models. We employ four state-of-the-art pre-trained models: Xception, VGG16, MobileNetV2, and ResNet50V2. The primary objective is to accurately classify blood cell types, crucial for various medical diagnostic applications. Our experiments show's promising results, with the MobileNetV2 model achieved an impressive Training Accuracy of 98.22%, Validation Accuracy 86.89%, and Test Accuracy of 87.00%.
AbstractList Blood cell image classification stands as a cornerstone in modern healthcare, playing a pivotal role in the diagnosis and treatment of a wide array of medical conditions. The precise and efficient categorization of blood cells holds the potential to exert a profound influence on patient care and medical research alike. The traditional methods faced challenges with accuracy and robustness due to the complexity and variability of blood cell images. This work, propose a comprehensive approach for the classification of four types of blood cells: Eosinophils, Lymphocytes, Monocytes, and Neutrophils using Convolutional Neural Networks (CNNs) and transfer learning models. We employ four state-of-the-art pre-trained models: Xception, VGG16, MobileNetV2, and ResNet50V2. The primary objective is to accurately classify blood cell types, crucial for various medical diagnostic applications. Our experiments show's promising results, with the MobileNetV2 model achieved an impressive Training Accuracy of 98.22%, Validation Accuracy 86.89%, and Test Accuracy of 87.00%.
Author Karegowda, Asha Gowda
Aishwarya
Leena Rani, A
Author_xml – sequence: 1
  givenname: Asha Gowda
  surname: Karegowda
  fullname: Karegowda, Asha Gowda
  email: asha_gowda@sit.ac.in
  organization: Siddaganga Institute of Technology,Dept of MCA,Tumkur,Karnataka,India
– sequence: 2
  givenname: A
  surname: Leena Rani
  fullname: Leena Rani, A
  email: leenaraania1@gmail.com
  organization: Siddaganga Institute of Technology,Dept of MCA,Tumkur,Karnataka,India
– sequence: 3
  surname: Aishwarya
  fullname: Aishwarya
  email: aishwarya.1si21mc003@gmail.com
  organization: Siddaganga Institute of Technology,Dept of MCA,Tumkur,Karnataka,India
BookMark eNpFj71OwzAYAI0EA5S-AYN5gBT_JvYYQimVQhkSVqovyWewFOzIZuHtEQLEdMvppLsgpyEGJOSasw3nzN7sm67bdqWQldwIJtSGM11ypewJWdvKGqmZLBVT7Jy81PQOcaEtQgo-vNJ6WVKE8Y26mOjtHONEG5znTJsZcvbOj_DhY6DP-dtuDgcKYaJ9gpAdpv_OY5xwzpfkzMGccf3LFenvt33zULRPu31Tt4VXVheIBgUYybVDBlIPnA-GD06NE0MrKjEpZZwZK9CaaZhKLQftjAPkHCyMckWufrIeEY9L8u-QPo9_1_ILb1dSgg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSSES62373.2024.10561449
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350364040
EndPage 6
ExternalDocumentID 10561449
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i495-ee8e2a8315fe0a35b11b81bf4cd0e9272d448f8c7a5505ad653b5f8fae11a9ac3
IEDL.DBID RIE
IngestDate Wed Jul 03 05:40:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i495-ee8e2a8315fe0a35b11b81bf4cd0e9272d448f8c7a5505ad653b5f8fae11a9ac3
PageCount 6
ParticipantIDs ieee_primary_10561449
PublicationCentury 2000
PublicationDate 2024-May-3
PublicationDateYYYYMMDD 2024-05-03
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES)
PublicationTitleAbbrev ICSSES
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9206266
Snippet Blood cell image classification stands as a cornerstone in modern healthcare, playing a pivotal role in the diagnosis and treatment of a wide array of medical...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Blood Cells
Classification
CNN
Convolutional neural networks
Medical conditions
Mobile applications
MobileNetV2
ResNet50V2
Robustness
Training
Transfer learning
VGG16
Xception
Title A Deep Learning Approach for Blood Cells Classification Using CNN and Transfer Learning Models
URI https://ieeexplore.ieee.org/document/10561449
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhEJ3YHownNdb4HUy80i6w24Vj3bapl8akPXiyYWEwJs22se7_F-i2jQcP3gghkAyBmQdv3gA8acx9YJtIWmYSaZpZRZWRmiKKvlJWpWhDcvJklk_f5HAUZHLoPhcGESP5DLuhGf_y7crU4amsx6JuZapa0MqV3CZrHcNjo5vZeylm_g7y_jwXHvjxtLsb_6tySnQc49N_LnkGnUMKHnndO5dzOMLqAt4HZIi4Jo0o6gcZNIrgxIee5Dlw0EmBy-WGxFqXgQUUDU8iMYAU0ynRlSXRP_lFDvOEimjLTQfm49G8mNCmQAL99LjG21Mi11KwzGGiRVYyVvoo1KXGJqh4zq3HXk6aXAcYom0_E2XmpNPImFbaiEtoV6sKr4BwwxMnwnksPb5A5qNCf_RN4pzipbDsGjrBNov1VgJjsTPLzR_9t3ASdiAyA8UdtL-_aryH1sbWD3HXfgAfVplL
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0IJupJjRi_rYnXwna7y7ZHXCAQcWMCB0-S7nZqTMhCRP6_bVkgHjx4a5q0TaZpZ1775g3Ao8LEBraBoHkskEaxllQWQlFE3pZSywi1S04ejJPsTXR7TiaHbnNhENGTz7Dpmv4vX8-LlXsqazGvWxnJGuzHUdJO1ulaB_BQKWe2hunY3kLWoyfcQr8wam5G_Kqd4l1H__ifi55AY5eER1637uUU9rA8g_cO6SIuSCWL-kE6lSY4scEneXIsdJLibLYkvtql4wF50xNPDSBplhFVauI9lF1kN4-riTZbNmDS703SAa1KJNBPi2ysRQWGSnAWGwwUj3PGchuHmqjQAcowCbVFX0YUiXJAROl2zPPYCKOQMSVVwc-hXs5LvAASFmFguDuRuUUYyGxcaA9_ERgjw5xrdgkNZ5vpYi2CMd2Y5eqP_ns4HExeRtPRMHu-hiO3G54nyG-g_v21wluoLfXqzu_gD2ISnJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Smart+Systems+for+applications+in+Electrical+Sciences+%28ICSSES%29&rft.atitle=A+Deep+Learning+Approach+for+Blood+Cells+Classification+Using+CNN+and+Transfer+Learning+Models&rft.au=Karegowda%2C+Asha+Gowda&rft.au=Leena+Rani%2C+A&rft.au=Aishwarya&rft.date=2024-05-03&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICSSES62373.2024.10561449&rft.externalDocID=10561449