Enhancing Cardiovascular Risk Assessment Through Machine Learning
Heart disease is the reason, for mortality. When it comes to addressing concerns, in a facility one of the major challenges is that numerous healthcare professionals lack the necessary expertise and confidence to handle such cases. As a result they tend to make decisions leading to progress and unfo...
Saved in:
Published in: | 2024 IEEE 9th International Conference for Convergence in Technology (I2CT) pp. 1 - 5 |
---|---|
Main Authors: | , , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
05-04-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Heart disease is the reason, for mortality. When it comes to addressing concerns, in a facility one of the major challenges is that numerous healthcare professionals lack the necessary expertise and confidence to handle such cases. As a result they tend to make decisions leading to progress and unfortunately fatal outcomes. In order to address this, cardiac issues have been predicted using ML methods. In this study, many methods like Naïve Baiyes, K-Nearest Neighbour, Logistic Regression, Support Vector Machine, and Random Forest been applied. By the findings of this study, KNN has a maximum accuracy of 84.33% in predicting cardiac complaints based on health factors. |
---|---|
AbstractList | Heart disease is the reason, for mortality. When it comes to addressing concerns, in a facility one of the major challenges is that numerous healthcare professionals lack the necessary expertise and confidence to handle such cases. As a result they tend to make decisions leading to progress and unfortunately fatal outcomes. In order to address this, cardiac issues have been predicted using ML methods. In this study, many methods like Naïve Baiyes, K-Nearest Neighbour, Logistic Regression, Support Vector Machine, and Random Forest been applied. By the findings of this study, KNN has a maximum accuracy of 84.33% in predicting cardiac complaints based on health factors. |
Author | Kumar, Ganta Karthik Mokshagna, Adivanna Kalyanapu, Srinivas Kandula, Ashok Reddy Vamsi Krishna Alapati, V M S Satya Sai, Chalamala |
Author_xml | – sequence: 1 givenname: Ashok Reddy surname: Kandula fullname: Kandula, Ashok Reddy email: ashokreddy.gec@gmail.com organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India – sequence: 2 givenname: Srinivas surname: Kalyanapu fullname: Kalyanapu, Srinivas email: kalyanapusrinivascse@gmail.com organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India – sequence: 3 givenname: V M S surname: Vamsi Krishna Alapati fullname: Vamsi Krishna Alapati, V M S email: alapativamsi2003@gmail.com organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India – sequence: 4 givenname: Adivanna surname: Mokshagna fullname: Mokshagna, Adivanna email: adivannamokshagna@gmail.com organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India – sequence: 5 givenname: Ganta Karthik surname: Kumar fullname: Kumar, Ganta Karthik email: gantakarthikkumar123@gmail.com organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India – sequence: 6 givenname: Chalamala surname: Satya Sai fullname: Satya Sai, Chalamala email: chsatya7890@gmail.com organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India |
BookMark | eNpVj8FKAzEURSPqQmv_QDA_MDXJSybJchiqLYwIMvvyJsl0gm1GEiv49wrqwtXlLM6Be00u0pwCIXecrThn9n4r2r7mQsBKMCFXnCkJoOGMLK22BhQDK6WW5_9YsSvSrNOEycW0py1mH-cPLO50wExfYnmlTSmhlGNI77Sf8nzaT_QJ3RRToF3AnL69G3I54qGE5e8uSP-w7ttN1T0_btumq6K0vDJGoBVjzYZaoZNco3eiZhwMswD1ILxRVknjLGfcKRi80gP60WrPUY8WFuT2JxtDCLu3HI-YP3d_R-ELKqxKKA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/I2CT61223.2024.10543373 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350394474 9798350394443 |
EndPage | 5 |
ExternalDocumentID | 10543373 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i491-882a92f60b65ac417adc26013809336b2d859548c9101c53bd57badf97d1a7f93 |
IEDL.DBID | RIE |
ISBN | 9798350394450 |
IngestDate | Wed Jul 03 05:40:18 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i491-882a92f60b65ac417adc26013809336b2d859548c9101c53bd57badf97d1a7f93 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10543373 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-5 |
PublicationDateYYYYMMDD | 2024-04-05 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-5 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE 9th International Conference for Convergence in Technology (I2CT) |
PublicationTitleAbbrev | I2CT |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9178239 |
Snippet | Heart disease is the reason, for mortality. When it comes to addressing concerns, in a facility one of the major challenges is that numerous healthcare... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Heart Heart Disease K-Nearest Neighbour(KNN) Logistic regression Logistic Regression(LR) Machine Learning (ML) Machine learning algorithms Measurement Medical services Naïve Bayes(NB) Random Forest(RF) Support Vector Machine(SVM) Support vector machines Vectors |
Title | Enhancing Cardiovascular Risk Assessment Through Machine Learning |
URI | https://ieeexplore.ieee.org/document/10543373 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMcH25MgqFjxTQ5eU3fzzrGsLfWgiO7BW0k22VqErVj7_c1sH9KDB29JYIdNljDJ7H9-A3CrEOIkmaLaKEeFc566dA-hSjFhXMCoGwbcxq_66c3cDxGTQ7e5MDHGVnwW-9hs_-WHebXEUFna4VJwrnkHOtqaTbLWgU0dLjNM8ZTZWsOVZ_bugRVlcuCMp2sgE_3N0zt1VFo3Mjr85wscQe83IY88b13NMezF5gQGw-YdaRnNlBQ7qlLyMlt8kMGWuUnKVTEe8tgqJyNZQ1WnPShHw7IY03VFBDoTNqfpNOwsq1XmlXSVyLULFSLBuMG4hPIsIK1MmCqdAfJKch-k9i7UVofc6dryU-g28yaeAfFIFuRR2qBq4WvpnNB1MqmU4TyZP4ceTn_yuWJeTDYzv_hj_BL2cZFbTYu8gu731zJeQ2cRljftZ_oBYP-QLg |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMcHWw8KgooV3-bgNXU3z82x1JYW2yK6B28lu8nWUtiKtd_fzPYhPXjwtgQ25EGYyeQ_vwF4UAhxkkxRnShLhbUZteEeQpViIrEOo24YcOu96dF78tRBTA7d5sJ47yvxmW_iZ_WW7-b5EkNl4YRLwbnmNdiXQiu9Sdc6MtoETyLCJE8ZrVVccWQe-6ydBhPOeLgIMtHc_L9TSaUyJN3jfw7hBBq_KXnkZWtsTmHPl2fQ6pQfyMsoJ6S9oyslr9PFjLS21E2SrsrxkGGlnfRkjVWdNCDtdtJ2j65rItCpMDEN_rA1rFBRpqTNRaytyxEKxhOMTKiMOeSViSQPXkCcS545qTPrCqNdbHVh-DnUy3npL4BkyBbkXhqnCpEV0lqhi9ClUgnnoftLaOD0x58r6sV4M_OrP9rv4aCXDgfjQX_0fA2HuOCVwkXeQP37a-lvobZwy7tqy34ALhqTfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+9th+International+Conference+for+Convergence+in+Technology+%28I2CT%29&rft.atitle=Enhancing+Cardiovascular+Risk+Assessment+Through+Machine+Learning&rft.au=Kandula%2C+Ashok+Reddy&rft.au=Kalyanapu%2C+Srinivas&rft.au=Vamsi+Krishna+Alapati%2C+V+M+S&rft.au=Mokshagna%2C+Adivanna&rft.date=2024-04-05&rft.pub=IEEE&rft.isbn=9798350394450&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FI2CT61223.2024.10543373&rft.externalDocID=10543373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350394450/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350394450/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350394450/sc.gif&client=summon&freeimage=true |