Enhancing Cardiovascular Risk Assessment Through Machine Learning

Heart disease is the reason, for mortality. When it comes to addressing concerns, in a facility one of the major challenges is that numerous healthcare professionals lack the necessary expertise and confidence to handle such cases. As a result they tend to make decisions leading to progress and unfo...

Full description

Saved in:
Bibliographic Details
Published in:2024 IEEE 9th International Conference for Convergence in Technology (I2CT) pp. 1 - 5
Main Authors: Kandula, Ashok Reddy, Kalyanapu, Srinivas, Vamsi Krishna Alapati, V M S, Mokshagna, Adivanna, Kumar, Ganta Karthik, Satya Sai, Chalamala
Format: Conference Proceeding
Language:English
Published: IEEE 05-04-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Heart disease is the reason, for mortality. When it comes to addressing concerns, in a facility one of the major challenges is that numerous healthcare professionals lack the necessary expertise and confidence to handle such cases. As a result they tend to make decisions leading to progress and unfortunately fatal outcomes. In order to address this, cardiac issues have been predicted using ML methods. In this study, many methods like Naïve Baiyes, K-Nearest Neighbour, Logistic Regression, Support Vector Machine, and Random Forest been applied. By the findings of this study, KNN has a maximum accuracy of 84.33% in predicting cardiac complaints based on health factors.
AbstractList Heart disease is the reason, for mortality. When it comes to addressing concerns, in a facility one of the major challenges is that numerous healthcare professionals lack the necessary expertise and confidence to handle such cases. As a result they tend to make decisions leading to progress and unfortunately fatal outcomes. In order to address this, cardiac issues have been predicted using ML methods. In this study, many methods like Naïve Baiyes, K-Nearest Neighbour, Logistic Regression, Support Vector Machine, and Random Forest been applied. By the findings of this study, KNN has a maximum accuracy of 84.33% in predicting cardiac complaints based on health factors.
Author Kumar, Ganta Karthik
Mokshagna, Adivanna
Kalyanapu, Srinivas
Kandula, Ashok Reddy
Vamsi Krishna Alapati, V M S
Satya Sai, Chalamala
Author_xml – sequence: 1
  givenname: Ashok Reddy
  surname: Kandula
  fullname: Kandula, Ashok Reddy
  email: ashokreddy.gec@gmail.com
  organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India
– sequence: 2
  givenname: Srinivas
  surname: Kalyanapu
  fullname: Kalyanapu, Srinivas
  email: kalyanapusrinivascse@gmail.com
  organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India
– sequence: 3
  givenname: V M S
  surname: Vamsi Krishna Alapati
  fullname: Vamsi Krishna Alapati, V M S
  email: alapativamsi2003@gmail.com
  organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India
– sequence: 4
  givenname: Adivanna
  surname: Mokshagna
  fullname: Mokshagna, Adivanna
  email: adivannamokshagna@gmail.com
  organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India
– sequence: 5
  givenname: Ganta Karthik
  surname: Kumar
  fullname: Kumar, Ganta Karthik
  email: gantakarthikkumar123@gmail.com
  organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India
– sequence: 6
  givenname: Chalamala
  surname: Satya Sai
  fullname: Satya Sai, Chalamala
  email: chsatya7890@gmail.com
  organization: Seshadri Rao Gudlavalleru Engineering College,Department of Artificial Intelligence and Data Science,India
BookMark eNpVj8FKAzEURSPqQmv_QDA_MDXJSybJchiqLYwIMvvyJsl0gm1GEiv49wrqwtXlLM6Be00u0pwCIXecrThn9n4r2r7mQsBKMCFXnCkJoOGMLK22BhQDK6WW5_9YsSvSrNOEycW0py1mH-cPLO50wExfYnmlTSmhlGNI77Sf8nzaT_QJ3RRToF3AnL69G3I54qGE5e8uSP-w7ttN1T0_btumq6K0vDJGoBVjzYZaoZNco3eiZhwMswD1ILxRVknjLGfcKRi80gP60WrPUY8WFuT2JxtDCLu3HI-YP3d_R-ELKqxKKA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/I2CT61223.2024.10543373
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350394474
9798350394443
EndPage 5
ExternalDocumentID 10543373
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i491-882a92f60b65ac417adc26013809336b2d859548c9101c53bd57badf97d1a7f93
IEDL.DBID RIE
ISBN 9798350394450
IngestDate Wed Jul 03 05:40:18 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i491-882a92f60b65ac417adc26013809336b2d859548c9101c53bd57badf97d1a7f93
PageCount 5
ParticipantIDs ieee_primary_10543373
PublicationCentury 2000
PublicationDate 2024-April-5
PublicationDateYYYYMMDD 2024-04-05
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-5
  day: 05
PublicationDecade 2020
PublicationTitle 2024 IEEE 9th International Conference for Convergence in Technology (I2CT)
PublicationTitleAbbrev I2CT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9178239
Snippet Heart disease is the reason, for mortality. When it comes to addressing concerns, in a facility one of the major challenges is that numerous healthcare...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Heart
Heart Disease
K-Nearest Neighbour(KNN)
Logistic regression
Logistic Regression(LR)
Machine Learning (ML)
Machine learning algorithms
Measurement
Medical services
Naïve Bayes(NB)
Random Forest(RF)
Support Vector Machine(SVM)
Support vector machines
Vectors
Title Enhancing Cardiovascular Risk Assessment Through Machine Learning
URI https://ieeexplore.ieee.org/document/10543373
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMcH25MgqFjxTQ5eU3fzzrGsLfWgiO7BW0k22VqErVj7_c1sH9KDB29JYIdNljDJ7H9-A3CrEOIkmaLaKEeFc566dA-hSjFhXMCoGwbcxq_66c3cDxGTQ7e5MDHGVnwW-9hs_-WHebXEUFna4VJwrnkHOtqaTbLWgU0dLjNM8ZTZWsOVZ_bugRVlcuCMp2sgE_3N0zt1VFo3Mjr85wscQe83IY88b13NMezF5gQGw-YdaRnNlBQ7qlLyMlt8kMGWuUnKVTEe8tgqJyNZQ1WnPShHw7IY03VFBDoTNqfpNOwsq1XmlXSVyLULFSLBuMG4hPIsIK1MmCqdAfJKch-k9i7UVofc6dryU-g28yaeAfFIFuRR2qBq4WvpnNB1MqmU4TyZP4ceTn_yuWJeTDYzv_hj_BL2cZFbTYu8gu731zJeQ2cRljftZ_oBYP-QLg
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMcHWw8KgooV3-bgNXU3z82x1JYW2yK6B28lu8nWUtiKtd_fzPYhPXjwtgQ25EGYyeQ_vwF4UAhxkkxRnShLhbUZteEeQpViIrEOo24YcOu96dF78tRBTA7d5sJ47yvxmW_iZ_WW7-b5EkNl4YRLwbnmNdiXQiu9Sdc6MtoETyLCJE8ZrVVccWQe-6ydBhPOeLgIMtHc_L9TSaUyJN3jfw7hBBq_KXnkZWtsTmHPl2fQ6pQfyMsoJ6S9oyslr9PFjLS21E2SrsrxkGGlnfRkjVWdNCDtdtJ2j65rItCpMDEN_rA1rFBRpqTNRaytyxEKxhOMTKiMOeSViSQPXkCcS545qTPrCqNdbHVh-DnUy3npL4BkyBbkXhqnCpEV0lqhi9ClUgnnoftLaOD0x58r6sV4M_OrP9rv4aCXDgfjQX_0fA2HuOCVwkXeQP37a-lvobZwy7tqy34ALhqTfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+9th+International+Conference+for+Convergence+in+Technology+%28I2CT%29&rft.atitle=Enhancing+Cardiovascular+Risk+Assessment+Through+Machine+Learning&rft.au=Kandula%2C+Ashok+Reddy&rft.au=Kalyanapu%2C+Srinivas&rft.au=Vamsi+Krishna+Alapati%2C+V+M+S&rft.au=Mokshagna%2C+Adivanna&rft.date=2024-04-05&rft.pub=IEEE&rft.isbn=9798350394450&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FI2CT61223.2024.10543373&rft.externalDocID=10543373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350394450/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350394450/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350394450/sc.gif&client=summon&freeimage=true