Design of Time-Domain Learned Volterra Equalisers for WDM Systems
We examine various design aspects of a learned time-domain multiple-input multiple-output (MIMO) Volterra-based equaliser and reveal their impact on the convergence and performance of the model. We show that appropriate parameter initialisation is vital for the model's convergence and scalabili...
Saved in:
Published in: | 2024 International Conference on Optical Network Design and Modeling (ONDM) pp. 1 - 3 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IFIP
06-05-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We examine various design aspects of a learned time-domain multiple-input multiple-output (MIMO) Volterra-based equaliser and reveal their impact on the convergence and performance of the model. We show that appropriate parameter initialisation is vital for the model's convergence and scalability to a higher number of channels. This design optimisation enables the first demonstration of a 7 × 7 operation of the MIMO algorithm at one step per span, achieving 1.5 dB effective signal-to-noise ratio improvement over single-channel nonlinear equalisation, hence significantly enhancing the transmission performance in a wavelength-division multiplexing scenario. |
---|---|
AbstractList | We examine various design aspects of a learned time-domain multiple-input multiple-output (MIMO) Volterra-based equaliser and reveal their impact on the convergence and performance of the model. We show that appropriate parameter initialisation is vital for the model's convergence and scalability to a higher number of channels. This design optimisation enables the first demonstration of a 7 × 7 operation of the MIMO algorithm at one step per span, achieving 1.5 dB effective signal-to-noise ratio improvement over single-channel nonlinear equalisation, hence significantly enhancing the transmission performance in a wavelength-division multiplexing scenario. |
Author | Boscolo, Sonia Castro, Nelson Ellis, Andrew D. Sygletos, Stylianos |
Author_xml | – sequence: 1 givenname: Nelson surname: Castro fullname: Castro, Nelson email: cast1901@aston.ac.uk organization: Aston University,AiPT,Birmingham,UK,B4 7ET – sequence: 2 givenname: Sonia surname: Boscolo fullname: Boscolo, Sonia email: s.a.boscolo@aston.ac.uk organization: Aston University,AiPT,Birmingham,UK,B4 7ET – sequence: 3 givenname: Andrew D. surname: Ellis fullname: Ellis, Andrew D. email: andrew.ellis@aston.ac.uk organization: Aston University,AiPT,Birmingham,UK,B4 7ET – sequence: 4 givenname: Stylianos surname: Sygletos fullname: Sygletos, Stylianos email: s.sygletos@aston.ac.uk organization: Aston University,AiPT,Birmingham,UK,B4 7ET |
BookMark | eNo1z7tOwzAUgGEjwQClb8DgF0iwz0l8GaumXKSUDo3KWNnpMbKUC9hl6NszANO_fdJ_x66neSLGuBQloJX2cffWbJWstSlBQFVKURtQVl6xpdUGrUCplQJ5y1YN5fgx8TnwLo5UNPPo4sRbcmmiEz_Mw5lScnzz9e2GmCllHubE35st31_ymcZ8z26CGzIt_7pg3dOmW78U7e75db1qi1hZWWiFYKsKre2VUGi8R1F7hVorhz2cemc0QNXbYGqg2nipvQskhPUOIAhcsIdfNhLR8TPF0aXL8X8MfwDdFUap |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/ONDM61578.2024.10582691 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9783903176621 3903176621 |
EndPage | 3 |
ExternalDocumentID | 10582691 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i491-7632944399c60638bb305b63776a3c2dca87224c9f852e58b17bafe009ba22f03 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 17 05:50:32 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i491-7632944399c60638bb305b63776a3c2dca87224c9f852e58b17bafe009ba22f03 |
PageCount | 3 |
ParticipantIDs | ieee_primary_10582691 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-6 |
PublicationDateYYYYMMDD | 2024-05-06 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-6 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | 2024 International Conference on Optical Network Design and Modeling (ONDM) |
PublicationTitleAbbrev | ONDM |
PublicationYear | 2024 |
Publisher | IFIP |
Publisher_xml | – name: IFIP |
Score | 1.9213363 |
Snippet | We examine various design aspects of a learned time-domain multiple-input multiple-output (MIMO) Volterra-based equaliser and reveal their impact on the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | machine learning MIMO communication nonlinearity equalisation Optical fiber networks Optical fibers optical fibre systems Optimization Scalability Time-domain analysis Volterra series Wavelength division multiplexing |
Title | Design of Time-Domain Learned Volterra Equalisers for WDM Systems |
URI | https://ieeexplore.ieee.org/document/10582691 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62P0DFim9y8Jq6m2TzOIrb0kurYFFvJZnMgge7Ut3_3yR9iAcP3kIIhCEM803m-2YIueUQUYJQyJSBikkuA3PYGAbClaIqAGxWpU2e9ezN1KPUJofttTCImMlnOEzLXMsPLXTpqyx6eBXRcNKq97Q1G7HWhp3DhS3t3eOsnsYIrRNli8vh7vivwSk5bowP_3njERn8KPDo0z62HJMDXJ6Q-zrTLWjb0KTcYHX7EfN6mlukYqAvbap8rxwdZaVkklHSCEnpaz2l28bkAzIfj-YPE7YdgcDepS1ZdH5uZUoZQCVs4X10T6-E1soJ4AGc0TEGg21MxbEyvtTeNRhxk3ecN4U4Jf1lu8QzQq0G1GCDkjEH4SCsL4ITkmvfBA1SnpNBMn_xuWlysdhZfvHH_mXKcBOto2KFuiL971WH16T3Fbqb_C5rJyyNmg |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhEJ1oPehJjTV-y8ErtQssLEfjtqmxrSY26q2BgU08uGuq_f8C_TAePHgjJIQMZDJv4L0ZgCuGASVw6aksMKeCCUeNrwqK3GQ87yLqpEobPKnxa1H2YpkcutbCeO8T-cx34jD95bsG5_GpLHh4HtBw1Kpv5UJJtZBrLfg5jOtMXz-My1GI0SqStpjorBb8ap2SIkd_95977kH7R4NHHtfRZR82fH0AN2UiXJCmIlG7QcvmPWT2JBVJ9Y48N_Hve2ZIL2klo5CSBFBKXsoRWZYmb8Ok35vcDuiyCQJ9Ezqjwf2ZFjFpQBnRhbXBQa3kSknDkTk0hQpRGHVV5Mznhc2UNZUPyMkaxqouP4RW3dT-CIhW6BVqJ0XIQhhybbvOcMGUrZxCIY6hHc2ffizKXExXlp_8MX8J24PJaDgd3o3vT2EnHnhiAsozaH3N5v4cNj_d_CLd0TfRPJDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Optical+Network+Design+and+Modeling+%28ONDM%29&rft.atitle=Design+of+Time-Domain+Learned+Volterra+Equalisers+for+WDM+Systems&rft.au=Castro%2C+Nelson&rft.au=Boscolo%2C+Sonia&rft.au=Ellis%2C+Andrew+D.&rft.au=Sygletos%2C+Stylianos&rft.date=2024-05-06&rft.pub=IFIP&rft.spage=1&rft.epage=3&rft_id=info:doi/10.23919%2FONDM61578.2024.10582691&rft.externalDocID=10582691 |