Design of Time-Domain Learned Volterra Equalisers for WDM Systems

We examine various design aspects of a learned time-domain multiple-input multiple-output (MIMO) Volterra-based equaliser and reveal their impact on the convergence and performance of the model. We show that appropriate parameter initialisation is vital for the model's convergence and scalabili...

Full description

Saved in:
Bibliographic Details
Published in:2024 International Conference on Optical Network Design and Modeling (ONDM) pp. 1 - 3
Main Authors: Castro, Nelson, Boscolo, Sonia, Ellis, Andrew D., Sygletos, Stylianos
Format: Conference Proceeding
Language:English
Published: IFIP 06-05-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We examine various design aspects of a learned time-domain multiple-input multiple-output (MIMO) Volterra-based equaliser and reveal their impact on the convergence and performance of the model. We show that appropriate parameter initialisation is vital for the model's convergence and scalability to a higher number of channels. This design optimisation enables the first demonstration of a 7 × 7 operation of the MIMO algorithm at one step per span, achieving 1.5 dB effective signal-to-noise ratio improvement over single-channel nonlinear equalisation, hence significantly enhancing the transmission performance in a wavelength-division multiplexing scenario.
AbstractList We examine various design aspects of a learned time-domain multiple-input multiple-output (MIMO) Volterra-based equaliser and reveal their impact on the convergence and performance of the model. We show that appropriate parameter initialisation is vital for the model's convergence and scalability to a higher number of channels. This design optimisation enables the first demonstration of a 7 × 7 operation of the MIMO algorithm at one step per span, achieving 1.5 dB effective signal-to-noise ratio improvement over single-channel nonlinear equalisation, hence significantly enhancing the transmission performance in a wavelength-division multiplexing scenario.
Author Boscolo, Sonia
Castro, Nelson
Ellis, Andrew D.
Sygletos, Stylianos
Author_xml – sequence: 1
  givenname: Nelson
  surname: Castro
  fullname: Castro, Nelson
  email: cast1901@aston.ac.uk
  organization: Aston University,AiPT,Birmingham,UK,B4 7ET
– sequence: 2
  givenname: Sonia
  surname: Boscolo
  fullname: Boscolo, Sonia
  email: s.a.boscolo@aston.ac.uk
  organization: Aston University,AiPT,Birmingham,UK,B4 7ET
– sequence: 3
  givenname: Andrew D.
  surname: Ellis
  fullname: Ellis, Andrew D.
  email: andrew.ellis@aston.ac.uk
  organization: Aston University,AiPT,Birmingham,UK,B4 7ET
– sequence: 4
  givenname: Stylianos
  surname: Sygletos
  fullname: Sygletos, Stylianos
  email: s.sygletos@aston.ac.uk
  organization: Aston University,AiPT,Birmingham,UK,B4 7ET
BookMark eNo1z7tOwzAUgGEjwQClb8DgF0iwz0l8GaumXKSUDo3KWNnpMbKUC9hl6NszANO_fdJ_x66neSLGuBQloJX2cffWbJWstSlBQFVKURtQVl6xpdUGrUCplQJ5y1YN5fgx8TnwLo5UNPPo4sRbcmmiEz_Mw5lScnzz9e2GmCllHubE35st31_ymcZ8z26CGzIt_7pg3dOmW78U7e75db1qi1hZWWiFYKsKre2VUGi8R1F7hVorhz2cemc0QNXbYGqg2nipvQskhPUOIAhcsIdfNhLR8TPF0aXL8X8MfwDdFUap
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/ONDM61578.2024.10582691
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9783903176621
3903176621
EndPage 3
ExternalDocumentID 10582691
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i491-7632944399c60638bb305b63776a3c2dca87224c9f852e58b17bafe009ba22f03
IEDL.DBID RIE
IngestDate Wed Jul 17 05:50:32 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i491-7632944399c60638bb305b63776a3c2dca87224c9f852e58b17bafe009ba22f03
PageCount 3
ParticipantIDs ieee_primary_10582691
PublicationCentury 2000
PublicationDate 2024-May-6
PublicationDateYYYYMMDD 2024-05-06
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-6
  day: 06
PublicationDecade 2020
PublicationTitle 2024 International Conference on Optical Network Design and Modeling (ONDM)
PublicationTitleAbbrev ONDM
PublicationYear 2024
Publisher IFIP
Publisher_xml – name: IFIP
Score 1.9213363
Snippet We examine various design aspects of a learned time-domain multiple-input multiple-output (MIMO) Volterra-based equaliser and reveal their impact on the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms machine learning
MIMO communication
nonlinearity equalisation
Optical fiber networks
Optical fibers
optical fibre systems
Optimization
Scalability
Time-domain analysis
Volterra series
Wavelength division multiplexing
Title Design of Time-Domain Learned Volterra Equalisers for WDM Systems
URI https://ieeexplore.ieee.org/document/10582691
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62P0DFim9y8Jq6m2TzOIrb0kurYFFvJZnMgge7Ut3_3yR9iAcP3kIIhCEM803m-2YIueUQUYJQyJSBikkuA3PYGAbClaIqAGxWpU2e9ezN1KPUJofttTCImMlnOEzLXMsPLXTpqyx6eBXRcNKq97Q1G7HWhp3DhS3t3eOsnsYIrRNli8vh7vivwSk5bowP_3njERn8KPDo0z62HJMDXJ6Q-zrTLWjb0KTcYHX7EfN6mlukYqAvbap8rxwdZaVkklHSCEnpaz2l28bkAzIfj-YPE7YdgcDepS1ZdH5uZUoZQCVs4X10T6-E1soJ4AGc0TEGg21MxbEyvtTeNRhxk3ecN4U4Jf1lu8QzQq0G1GCDkjEH4SCsL4ITkmvfBA1SnpNBMn_xuWlysdhZfvHH_mXKcBOto2KFuiL971WH16T3Fbqb_C5rJyyNmg
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhEJ1oPehJjTV-y8ErtQssLEfjtqmxrSY26q2BgU08uGuq_f8C_TAePHgjJIQMZDJv4L0ZgCuGASVw6aksMKeCCUeNrwqK3GQ87yLqpEobPKnxa1H2YpkcutbCeO8T-cx34jD95bsG5_GpLHh4HtBw1Kpv5UJJtZBrLfg5jOtMXz-My1GI0SqStpjorBb8ap2SIkd_95977kH7R4NHHtfRZR82fH0AN2UiXJCmIlG7QcvmPWT2JBVJ9Y48N_Hve2ZIL2klo5CSBFBKXsoRWZYmb8Ok35vcDuiyCQJ9Ezqjwf2ZFjFpQBnRhbXBQa3kSknDkTk0hQpRGHVV5Mznhc2UNZUPyMkaxqouP4RW3dT-CIhW6BVqJ0XIQhhybbvOcMGUrZxCIY6hHc2ffizKXExXlp_8MX8J24PJaDgd3o3vT2EnHnhiAsozaH3N5v4cNj_d_CLd0TfRPJDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Optical+Network+Design+and+Modeling+%28ONDM%29&rft.atitle=Design+of+Time-Domain+Learned+Volterra+Equalisers+for+WDM+Systems&rft.au=Castro%2C+Nelson&rft.au=Boscolo%2C+Sonia&rft.au=Ellis%2C+Andrew+D.&rft.au=Sygletos%2C+Stylianos&rft.date=2024-05-06&rft.pub=IFIP&rft.spage=1&rft.epage=3&rft_id=info:doi/10.23919%2FONDM61578.2024.10582691&rft.externalDocID=10582691