Predictive Maintenance for Industrial Equipment: Using XGBoost and Local Outlier Factor with Explainable AI for analysis

In industrial operations, the need to minimize downtime and enhance productivity has produced the need for predictive maintenance techniques. Using artificial intelligence (AI) in this domain has revolutionized maintenance practices, but the lack of transparency of many AI models has obstructed thei...

Full description

Saved in:
Bibliographic Details
Published in:2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence) pp. 25 - 30
Main Authors: Ghadekar, Premanand, Manakshe, Aman, Madhikar, Sarthak, Patil, Sushrut, Mukadam, Mehvish, Gambhir, Tejas
Format: Conference Proceeding
Language:English
Published: IEEE 18-01-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In industrial operations, the need to minimize downtime and enhance productivity has produced the need for predictive maintenance techniques. Using artificial intelligence (AI) in this domain has revolutionized maintenance practices, but the lack of transparency of many AI models has obstructed their widespread acceptance and trustworthiness. This research paper explores the application of XGBoost and Local Outlier Factor algorithms in the domain of Predictive Industrial Maintenance for industrial materials. Using these advanced machine learning techniques, this research aims to predict equipment failures and improve the overall reliability of industrial processes. In addition, this research employs Explainable AI methods to provide clear and interpretable insights into the predictive models' decision-making processes. By combining the power of XGBoost and Local Outlier Factor with explainability. In this study, for predictive classification, the XGBoost gave an F1 score of 96% and for early prediction Local Outlier Factor gave an F1 score of 94% this research also explained the impact of features on Output class using the SHAP model. This research not only enhances predictive accuracy but also ensures transparency, enabling users to make informed decisions for timely maintenance and system optimization.
AbstractList In industrial operations, the need to minimize downtime and enhance productivity has produced the need for predictive maintenance techniques. Using artificial intelligence (AI) in this domain has revolutionized maintenance practices, but the lack of transparency of many AI models has obstructed their widespread acceptance and trustworthiness. This research paper explores the application of XGBoost and Local Outlier Factor algorithms in the domain of Predictive Industrial Maintenance for industrial materials. Using these advanced machine learning techniques, this research aims to predict equipment failures and improve the overall reliability of industrial processes. In addition, this research employs Explainable AI methods to provide clear and interpretable insights into the predictive models' decision-making processes. By combining the power of XGBoost and Local Outlier Factor with explainability. In this study, for predictive classification, the XGBoost gave an F1 score of 96% and for early prediction Local Outlier Factor gave an F1 score of 94% this research also explained the impact of features on Output class using the SHAP model. This research not only enhances predictive accuracy but also ensures transparency, enabling users to make informed decisions for timely maintenance and system optimization.
Author Madhikar, Sarthak
Ghadekar, Premanand
Manakshe, Aman
Patil, Sushrut
Mukadam, Mehvish
Gambhir, Tejas
Author_xml – sequence: 1
  givenname: Premanand
  surname: Ghadekar
  fullname: Ghadekar, Premanand
  email: premanand.ghadekar@vit.edu
  organization: Vishwakarma Institute of Technology,Dept. of Information Technology,Pune,India
– sequence: 2
  givenname: Aman
  surname: Manakshe
  fullname: Manakshe, Aman
  email: aman.manakshe21@vit.edu
  organization: Vishwakarma Institute of Technology,Dept. of Information Technology,Pune,India
– sequence: 3
  givenname: Sarthak
  surname: Madhikar
  fullname: Madhikar, Sarthak
  email: sarthak.madhikar21@vit.edu
  organization: Vishwakarma Institute of Technology,Dept. of Information Technology,Pune,India
– sequence: 4
  givenname: Sushrut
  surname: Patil
  fullname: Patil, Sushrut
  email: sushrut.patil21@vit.edu
  organization: Vishwakarma Institute of Technology,Dept. of Information Technology,Pune,India
– sequence: 5
  givenname: Mehvish
  surname: Mukadam
  fullname: Mukadam, Mehvish
  email: mohammed.mehvish21@vit.edu
  organization: Vishwakarma Institute of Technology,Dept. of Information Technology,Pune,India
– sequence: 6
  givenname: Tejas
  surname: Gambhir
  fullname: Gambhir, Tejas
  email: tejas.gambhir21@vit.edu
  organization: Vishwakarma Institute of Technology,Dept. of Information Technology,Pune,India
BookMark eNo10EtPAjEUBeBqNBGRf-CiG5eDfcy0U3dIAEkwuMCEHbmdttpk6OC0o_DvnfhY3c05X3LuNboITbAI3VEyppSo-2kTXN3ZUFlBGONjRlg-piQXnJXkDI2UVCUvCM_zkstzNGBSiCxndHuFRjF6TYqikKWS5QAdX1prfJX8p8XP4EOyAXoXu6bFy2C6mFoPNZ59dP6wtyE94NfowxveLh6bJiYMweBVU_WRdZdqb1s8hyr15S-f3vHseKh7FHRt8WT5g0KA-hR9vEGXDupoR393iDbz2Wb6lK3Wi-V0ssp8rkimClZRabirlAEhqdQESCEY544z188iQgmmlTOgRalzTTVVhlAARaCinA_R7S_rrbW7Q-v30J52_7_i34SsZAQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/Confluence60223.2024.10463280
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350344837
EISSN 2766-421X
EndPage 30
ExternalDocumentID 10463280
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
M43
RIE
RIL
ID FETCH-LOGICAL-i490-952c17d3fc9da6717b0a056233f32f76606962b9fdab68b4b1b19d01aa90ac133
IEDL.DBID RIE
IngestDate Wed Jun 26 19:40:42 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i490-952c17d3fc9da6717b0a056233f32f76606962b9fdab68b4b1b19d01aa90ac133
PageCount 6
ParticipantIDs ieee_primary_10463280
PublicationCentury 2000
PublicationDate 2024-Jan.-18
PublicationDateYYYYMMDD 2024-01-18
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.-18
  day: 18
PublicationDecade 2020
PublicationTitle 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence)
PublicationTitleAbbrev CONFLUENCE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib055578978
ssib054990895
Score 1.9094108
Snippet In industrial operations, the need to minimize downtime and enhance productivity has produced the need for predictive maintenance techniques. Using artificial...
SourceID ieee
SourceType Publisher
StartPage 25
SubjectTerms Explainable AI
Industrial materials
Local Outlier Factor
Merging
Prediction algorithms
Predictive maintenance
Predictive models
Productivity
Reliability
Task analysis
XGBoost
Title Predictive Maintenance for Industrial Equipment: Using XGBoost and Local Outlier Factor with Explainable AI for analysis
URI https://ieeexplore.ieee.org/document/10463280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoB8QEiCLe8gBjWjsPx2bj0VIkHpXo0K3yK1KXBNpG4udz56atGBjYkgynyLZ8993d9x0h18KCm7HSRCJlNkq505GSAl5VbjW3gimL5OThR_42kY99lMmJNlwY731oPvNdfAy1fFfZGlNlPaxHJrEEhN7KlVyRtdaHB3EOk1uSaZbBWQSItEtuGl3NHnLoVnM_BHiuBMBhnHbXNn9NVwnOZbD_z986IJ0tTY-ONg7okOz48oh8j-ZYe8FbjL5qVINASQ1PITil2zkdtP9Vz0Kr0C0NXQN08nRfVYsl1aWjL-jg6Hu9hAB1TgdhJA_FjC3Flr2Gb0XvnoNR3ciadMh40B8_DKNmvEI0SxWLVBZbnruksMppAajOMB2ioaRI4iIXgGyUiI0qnDZCmtRww5VjXGvFtAVoe0zaZVX6E0IzZRiEgcZwZ1PnsTIHluEy0FxDeJadkg6u2vRzJaAxXS_Y2R_fz8ke7g1mOri8IO3lvPaXpLVw9VXY8x-Q9qw0
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSMAEiCLeeIAxxc7Didl4tLSiLZXo0K3yK1KXBNpG4udz577EwMCWZDhFtuW77-6-7wi5FQbcjMl0IGJmgphbFchMwKtMjeJGMGmQnNz-SPuj7KWJMjnBmgvjnPPNZ66Bj76Wb0tTYarsHuuRUZgBQt9J4lSkC7rW6vgg0mHZhmaaJHAaASTtkrulsuY9sugWkz8E-K4I4GEYN1ZWf81X8e6ldfDPHzsk9Q1Rjw7WLuiIbLnimHwPplh9wXuM9hTqQaCohqMQntLNpA7a_Komvlnogfq-ATp6fSrL2ZyqwtIuujj6Xs0hRJ3Slh_KQzFnS7Fpb8m4oo8db1QthU3qZNhqDp_bwXLAQjCJJQtkEhqe2ig30ioBuE4z5eOhKI_CPBWAbaQItcyt0iLTseaaS8u4UpIpA-D2hNSKsnCnhCZSMwgEtebWxNZhbQ4sw3WguIIALTkjdVy18edCQmO8WrDzP77fkL32sNcddzv9twuyj_uEeQ-eXZLafFq5K7I9s9W13_8fzvuvhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+14th+International+Conference+on+Cloud+Computing%2C+Data+Science+%26+Engineering+%28Confluence%29&rft.atitle=Predictive+Maintenance+for+Industrial+Equipment%3A+Using+XGBoost+and+Local+Outlier+Factor+with+Explainable+AI+for+analysis&rft.au=Ghadekar%2C+Premanand&rft.au=Manakshe%2C+Aman&rft.au=Madhikar%2C+Sarthak&rft.au=Patil%2C+Sushrut&rft.date=2024-01-18&rft.pub=IEEE&rft.eissn=2766-421X&rft.spage=25&rft.epage=30&rft_id=info:doi/10.1109%2FConfluence60223.2024.10463280&rft.externalDocID=10463280