A Proficient Approach to Detect Osteosarcoma Through Deep Learning

Osteosarcoma is a life-threatening bone cancer that usually attacks young adults and children, independent of age. It habitually starts in quick-growing bone areas close to the ends of the arm or leg bones, such as the distal femur, proximal tibia, and proximal humerus. However, it can still be reve...

Full description

Saved in:
Bibliographic Details
Published in:2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22) pp. 1 - 6
Main Authors: Ahammad, Mejbah, Abedin, Mohammad Joynul, Khan, Md. Asiqur Rahman, Alim, Md. Abdul, Rony, Mohammad Abu Tareq, Alam, K.M. Rashedul, Reza, D. S. A. Aashiqur, Uddin, Iktear
Format: Conference Proceeding
Language:English
Published: IEEE 29-04-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Osteosarcoma is a life-threatening bone cancer that usually attacks young adults and children, independent of age. It habitually starts in quick-growing bone areas close to the ends of the arm or leg bones, such as the distal femur, proximal tibia, and proximal humerus. However, it can still be revealed in any bone, including the pelvis, jaw, and shoulder. The starting and the preeminent conclusion of any cancer are to identify the tumor as before long as conceivable, and it's moreover pertinent for Osteosarcoma. Osteosarcoma has a few arrange in its life cycle. The need of categorizing cancer patients into tall or short risk categories has prompted several research organizations in the biomedical and bioinformatics fields to consider using Profound Learning (Deep Learning) methodologies. Fast.ai, a Deep Learning Framework for enhancing the efficiency and accu-racy of osteosarcoma tumor categorization into tumor classes, is presented in this study (tumor vs non-tumor). At the conclusion of the study, we found that employing neural networks may provide excellent precision and capability in osteosarcoma classification and model comparison.
AbstractList Osteosarcoma is a life-threatening bone cancer that usually attacks young adults and children, independent of age. It habitually starts in quick-growing bone areas close to the ends of the arm or leg bones, such as the distal femur, proximal tibia, and proximal humerus. However, it can still be revealed in any bone, including the pelvis, jaw, and shoulder. The starting and the preeminent conclusion of any cancer are to identify the tumor as before long as conceivable, and it's moreover pertinent for Osteosarcoma. Osteosarcoma has a few arrange in its life cycle. The need of categorizing cancer patients into tall or short risk categories has prompted several research organizations in the biomedical and bioinformatics fields to consider using Profound Learning (Deep Learning) methodologies. Fast.ai, a Deep Learning Framework for enhancing the efficiency and accu-racy of osteosarcoma tumor categorization into tumor classes, is presented in this study (tumor vs non-tumor). At the conclusion of the study, we found that employing neural networks may provide excellent precision and capability in osteosarcoma classification and model comparison.
Author Rony, Mohammad Abu Tareq
Ahammad, Mejbah
Abedin, Mohammad Joynul
Alim, Md. Abdul
Alam, K.M. Rashedul
Uddin, Iktear
Khan, Md. Asiqur Rahman
Reza, D. S. A. Aashiqur
Author_xml – sequence: 1
  givenname: Mejbah
  surname: Ahammad
  fullname: Ahammad, Mejbah
  email: 17-34760-2@student.aiub.edu
  organization: American International University Bangladesh,Faculty of Science & Technology,Dhaka,Bangladesh
– sequence: 2
  givenname: Mohammad Joynul
  surname: Abedin
  fullname: Abedin, Mohammad Joynul
  email: 17-34845-2@student.aiub.edu
  organization: American International University Bangladesh,Faculty of Science & Technology,Dhaka,Bangladesh
– sequence: 3
  givenname: Md. Asiqur Rahman
  surname: Khan
  fullname: Khan, Md. Asiqur Rahman
  email: 17-34907-2@student.aiub.edu
  organization: Noakhali Science and Technology University,Department of Statistics,Noakhali,Bangladesh,3814
– sequence: 4
  givenname: Md. Abdul
  surname: Alim
  fullname: Alim, Md. Abdul
  email: alim.abdul.5915@gmail.com
  organization: Noakhali Science and Technology University,Department of Statistics,Noakhali,Bangladesh,3814
– sequence: 5
  givenname: Mohammad Abu Tareq
  surname: Rony
  fullname: Rony, Mohammad Abu Tareq
  email: abutareqrony@gmail.com
  organization: Noakhali Science and Technology University,Department of Statistics,Noakhali,Bangladesh,3814
– sequence: 6
  givenname: K.M. Rashedul
  surname: Alam
  fullname: Alam, K.M. Rashedul
  email: rashedulalam.km@gmail.com
  organization: Friedrich-Alexander University,Department of Data Science,Erlangen Nurnberg,Germany
– sequence: 7
  givenname: D. S. A. Aashiqur
  surname: Reza
  fullname: Reza, D. S. A. Aashiqur
  email: aashiq.reza007@gmail.com
  organization: Khulna University,Mathematics Discipline,Khulna,Bangladesh
– sequence: 8
  givenname: Iktear
  surname: Uddin
  fullname: Uddin, Iktear
  email: iktearuddinemon@gmail.com
  organization: Daffodil International University,Software Engineering,Dhaka,Bangladesh
BookMark eNotj8FOhDAURavRxHHkC9x05wpsH21pl4ioJCQziewnnfIYMA4lBRf-vSTO6ubkJif33pOb0Y9IyBNnCefMPFdF2ZRN_FntYwApBJcJMIDEZIZLBlckMpnmSkmhMsHFNdkAl1nMhJZ3JJrnL8bY6lFGsA15yek--G5wA44LzacpeOt6unj6igu6he7mBf1sg_NnS5s--J9Tv3Y40RptGIfx9EBuO_s9Y3TJLWneyqb4iOvde1XkdTwILWKwQkmeHVurtZaudYxB1xnXIrYrOeUcQMtAqoyjssd1rbFaKJF2qeUdpFvy-K8dEPEwheFsw-_hcjr9A0taT6s
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICETET-SIP-2254415.2022.9791502
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665467414
166546741X
EISSN 2157-0485
EndPage 6
ExternalDocumentID 9791502
Genre orig-research
GroupedDBID 6IE
6IL
6IN
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i484-2a46517bda8885cdc002ff9cdeedcdcc6cc22d025671e6ab4859a84643f3a1f23
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:07 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i484-2a46517bda8885cdc002ff9cdeedcdcc6cc22d025671e6ab4859a84643f3a1f23
PageCount 6
ParticipantIDs ieee_primary_9791502
PublicationCentury 2000
PublicationDate 2022-April-29
PublicationDateYYYYMMDD 2022-04-29
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-April-29
  day: 29
PublicationDecade 2020
PublicationTitle 2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22)
PublicationTitleAbbrev ICETET-SIP-22
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096940
Score 1.8433543
Snippet Osteosarcoma is a life-threatening bone cancer that usually attacks young adults and children, independent of age. It habitually starts in quick-growing bone...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Annotation
Augmentation
Bones
Convolutional neural network
Deep learning
fastai
Grad-CAM
Information processing
Legged locomotion
Neural networks
Organizations
Osteosarcoma
Segmentation
Title A Proficient Approach to Detect Osteosarcoma Through Deep Learning
URI https://ieeexplore.ieee.org/document/9791502
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb8IwDLUGh2kntsG0b-UwaZcFaEjb5MigCC4bEj3shkLjTjuMogH_f3bpQJN22a1pKytyWvs5jp8BHlBrJBQeyojLlrV1ZAdVV0sk52KyrstNxPXO41n88maGCdPkPO1rYRCxPHyGbb4sc_m-yLa8VdaxsSX8Qga3Fluzq9U67KcQFre6ewyPFY1mZzJI0iSVs8lUKibiCkIKB5VqV1J-tVMpvcmo8b95nELrUJYnpnuHcwZHuDyHxk9fBlH9pk147vNrTA1BYkS_Yg0Xm0IMkXMG4pWWtljTJ158OpHuOvXQM1yJim71vQXpKEkHY1n1SpAf2mipHPc0jxfeUUQbZj4jQ5fnNvM0IxplfDpaecY3cYCRW2gTWkfQQ_fyngty1buA-rJY4iUIwisOlXWhybX26CzL1YGxNKBgzV9BkzUyX-3YMOaVMq7_vn0DJ6x0zr8oewv1zdcW76C29tv7cv2-AfVfmb4
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oJuoJFYxv92DixQJdto89IpRARCShB29k6U6JBykR-P_OlAox8eKt2zaTzU47883OzjcAD6gUEgr3HJ_LlpU2ZAdlQzlIziVMGiYNfa537o2D4XvYiZgm52lbC4OI-eEzrPFlnsu3WbLmrbK6DjThFzK4B54K_GBTrbXbUSE0rlXjEB4LIs16vx3FUeyM-yNHMhWX61FAKGWtkPOroUruT7rl_83kBKq7wjwx2rqcU9jD-RmUfzoziOJHrcBzi19jcggSI1oFb7hYZaKDnDUQb6TcbEkfefZpRLzp1UPPcCEKwtVZFeJuFLd7TtEtwflQoXKk4a7mwdQaimm9xCZk6tJUJ5ZmRKOEz0dLywgncNE3UxV62hD4UM20adxUNs-hNM_meAGCEItBqY0XpkpZNJrlKjfUNKBwzV5ChVdkstjwYUyKxbj6-_Y9HPXi18Fk0B--XMMxK4CzMVLfQGn1tcZb2F_a9V2uy28-3p0P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+10th+International+Conference+on+Emerging+Trends+in+Engineering+and+Technology+-+Signal+and+Information+Processing+%28ICETET-SIP-22%29&rft.atitle=A+Proficient+Approach+to+Detect+Osteosarcoma+Through+Deep+Learning&rft.au=Ahammad%2C+Mejbah&rft.au=Abedin%2C+Mohammad+Joynul&rft.au=Khan%2C+Md.+Asiqur+Rahman&rft.au=Alim%2C+Md.+Abdul&rft.date=2022-04-29&rft.pub=IEEE&rft.eissn=2157-0485&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICETET-SIP-2254415.2022.9791502&rft.externalDocID=9791502