Staying awake - a genetic region that hinders α2 adrenergic receptor agonist-induced sleep

How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non‐specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors, has unusual properties that make it useful for investigating this question....

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience Vol. 40; no. 1; pp. 2311 - 2319
Main Authors: Gelegen, Cigdem, Gent, Thomas C., Ferretti, Valentina, Zhang, Zhe, Yustos, Raquel, Lan, Fei, Yang, Qianzi, Overington, Dorothy W. U., Vyssotski, Alexei L., van Lith, Hein A., Wisden, William, Franks, Nicholas P.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01-07-2014
Blackwell
BlackWell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non‐specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors, has unusual properties that make it useful for investigating this question. Dexmedetomidine is considered to produce an ‘arousable’ sleep‐like state, so that patients or animals given dexmedetomidine become alert following modest stimulation. We hypothesized that it might be more difficult to make mice unconscious with dexmedetomidine if there was a sufficient external stimulus. Employing a motorized rotating cylinder, which provided a continuous and controlled arousal stimulus, we quantitatively measured the ability of such a stimulus to prevent dexmedetomidine loss of righting reflex in two inbred strains of mice (C57BL/6 and 129X1). We found that whereas the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine‐induced hypnosis, the 129X1 strain stayed awake even with minimal stimuli. Remarkably, this could be calibrated as a simple threshold trait, i.e. a binary ‘yes–no’ response, which after crossing the two mouse strains behaved as a dominant‐like trait. We carried out a genome‐wide linkage analysis on the F2 progeny to determine if the ability of a stimulus to prevent dexmedetomidine hypnosis could be mapped to one or more chromosomal regions. We identified a locus on chromosome 4 with an associated Logarithm of Odds score exceeding the pre‐established threshold level. These results show that complex traits, such as the ability of a stimulus to reverse drug‐induced hypnosis, may have precise genetic determinants. This paper shows that two in‐bred strains of mouse, C57BL/6 and 129X1 respond very differently to an external stimulus when given the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors. Both strains respond identically in the absence of a stimulus, however, the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine‐induced hypnosis whereas the 129X1 strain stayed awake even with minimal stimuli. A genome‐wide linkage analysis identified a key determinant on chromosome 4 which behaved as a dominant‐like trait.
AbstractList How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non‐specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors, has unusual properties that make it useful for investigating this question. Dexmedetomidine is considered to produce an ‘arousable’ sleep‐like state, so that patients or animals given dexmedetomidine become alert following modest stimulation. We hypothesized that it might be more difficult to make mice unconscious with dexmedetomidine if there was a sufficient external stimulus. Employing a motorized rotating cylinder, which provided a continuous and controlled arousal stimulus, we quantitatively measured the ability of such a stimulus to prevent dexmedetomidine loss of righting reflex in two inbred strains of mice (C57BL/6 and 129X1). We found that whereas the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine‐induced hypnosis, the 129X1 strain stayed awake even with minimal stimuli. Remarkably, this could be calibrated as a simple threshold trait, i.e. a binary ‘yes–no’ response, which after crossing the two mouse strains behaved as a dominant‐like trait. We carried out a genome‐wide linkage analysis on the F2 progeny to determine if the ability of a stimulus to prevent dexmedetomidine hypnosis could be mapped to one or more chromosomal regions. We identified a locus on chromosome 4 with an associated Logarithm of Odds score exceeding the pre‐established threshold level. These results show that complex traits, such as the ability of a stimulus to reverse drug‐induced hypnosis, may have precise genetic determinants. This paper shows that two in‐bred strains of mouse, C57BL/6 and 129X1 respond very differently to an external stimulus when given the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors. Both strains respond identically in the absence of a stimulus, however, the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine‐induced hypnosis whereas the 129X1 strain stayed awake even with minimal stimuli. A genome‐wide linkage analysis identified a key determinant on chromosome 4 which behaved as a dominant‐like trait.
How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non-specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α 2 adrenergic receptors, has unusual properties that make it useful for investigating this question. Dexmedetomidine is considered to produce an ‘arousable’ sleep-like state, so that patients or animals given dexmedetomidine become alert following modest stimulation. We hypothesized that it might be more difficult to make mice unconscious with dexmedetomidine if there was a sufficient external stimulus. Employing a motorized rotating cylinder, which provided a continuous and controlled arousal stimulus, we quantitatively measured the ability of such a stimulus to prevent dexmedetomidine loss of righting reflex in two inbred strains of mice (C57BL/6 and 129X1). We found that whereas the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine-induced hypnosis, the 129X1 strain stayed awake even with minimal stimuli. Remarkably, this could be calibrated as a simple threshold trait, i.e. a binary ‘yes–no’ response, which after crossing the two mouse strains behaved as a dominant-like trait. We carried out a genome-wide linkage analysis on the F 2 progeny to determine if the ability of a stimulus to prevent dexmedetomidine hypnosis could be mapped to one or more chromosomal regions. We identified a locus on chromosome 4 with an associated Logarithm of Odds score exceeding the pre-established threshold level. These results show that complex traits, such as the ability of a stimulus to reverse drug-induced hypnosis, may have precise genetic determinants.
How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non-specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors, has unusual properties that make it useful for investigating this question. Dexmedetomidine is considered to produce an 'arousable' sleep-like state, so that patients or animals given dexmedetomidine become alert following modest stimulation. We hypothesized that it might be more difficult to make mice unconscious with dexmedetomidine if there was a sufficient external stimulus. Employing a motorized rotating cylinder, which provided a continuous and controlled arousal stimulus, we quantitatively measured the ability of such a stimulus to prevent dexmedetomidine loss of righting reflex in two inbred strains of mice (C57BL/6 and 129X1). We found that whereas the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine-induced hypnosis, the 129X1 strain stayed awake even with minimal stimuli. Remarkably, this could be calibrated as a simple threshold trait, i.e. a binary 'yes-no' response, which after crossing the two mouse strains behaved as a dominant-like trait. We carried out a genome-wide linkage analysis on the F2 progeny to determine if the ability of a stimulus to prevent dexmedetomidine hypnosis could be mapped to one or more chromosomal regions. We identified a locus on chromosome 4 with an associated Logarithm of Odds score exceeding the pre-established threshold level. These results show that complex traits, such as the ability of a stimulus to reverse drug-induced hypnosis, may have precise genetic determinants.
Author van Lith, Hein A.
Vyssotski, Alexei L.
Yang, Qianzi
Franks, Nicholas P.
Wisden, William
Zhang, Zhe
Yustos, Raquel
Lan, Fei
Overington, Dorothy W. U.
Gelegen, Cigdem
Gent, Thomas C.
Ferretti, Valentina
Author_xml – sequence: 1
  givenname: Cigdem
  surname: Gelegen
  fullname: Gelegen, Cigdem
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
– sequence: 2
  givenname: Thomas C.
  surname: Gent
  fullname: Gent, Thomas C.
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
– sequence: 3
  givenname: Valentina
  surname: Ferretti
  fullname: Ferretti, Valentina
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
– sequence: 4
  givenname: Zhe
  surname: Zhang
  fullname: Zhang, Zhe
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
– sequence: 5
  givenname: Raquel
  surname: Yustos
  fullname: Yustos, Raquel
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
– sequence: 6
  givenname: Fei
  surname: Lan
  fullname: Lan, Fei
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
– sequence: 7
  givenname: Qianzi
  surname: Yang
  fullname: Yang, Qianzi
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
– sequence: 8
  givenname: Dorothy W. U.
  surname: Overington
  fullname: Overington, Dorothy W. U.
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
– sequence: 9
  givenname: Alexei L.
  surname: Vyssotski
  fullname: Vyssotski, Alexei L.
  organization: Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland
– sequence: 10
  givenname: Hein A.
  surname: van Lith
  fullname: van Lith, Hein A.
  organization: Division of Animal Welfare & Laboratory Animal Science, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
– sequence: 11
  givenname: William
  surname: Wisden
  fullname: Wisden, William
  email: n.franks@imperial.ac.ukw.wisden@imperial.ac.uk
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
– sequence: 12
  givenname: Nicholas P.
  surname: Franks
  fullname: Franks, Nicholas P.
  email: n.franks@imperial.ac.ukw.wisden@imperial.ac.uk
  organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28676215$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24674448$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1u1DAUhS1URKeFBS-AvEFik9aOf-JskGjVH1A1gAqiEgvrJrnJuM04g52hzGP1RXgmzMwwgDfX0v3OOdI9B2TPDx4Jec7ZEU_vGG_9Ec9VwR6RCZeaZaXSZo9MWKlEZri-2ScHMd4yxoyW6gnZz6UupJRmQr5ej7ByvqNwD3dIMwq0Q4-jq2nAzg2ejjMY6cz5BkOkPx9yCk1IROjWSI2LcQgUusG7OGYJW9bY0NgjLp6Sxy30EZ9t5yH5fH726fQyu3p_8fb0zVXmRClZxivZsEqXyOvSMFFVChgCAmjMjZHKCNA5ti2i4qJqtJC6YaKooGjKpmVMHJLXG9_FsppjU6MfA_R2EdwcwsoO4Oz_G-9mthu-W5lzpUqTDF5tDcLwbYlxtHMXa-x78Dgso-VKFkpKrVVCX_ybtQv5c9EEvNwCEGvo2wC-dvEvZ3ShU2zijjfcvetxtdtzZn9XalOldl2pPXs3XX-SItso0qHxx04B4c7qQhTKfple2I8358WHKTux1-IXFtimWw
ContentType Journal Article
Copyright 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2015 INIST-CNRS
2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2014
Copyright_xml – notice: 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: 2015 INIST-CNRS
– notice: 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2014
DBID BSCLL
24P
WIN
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/ejn.12570
DatabaseName Istex
Wiley Open Access
Wiley Online Library Open Access
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 2319
ExternalDocumentID 24674448
28676215
EJN12570
ark_67375_WNG_QXF7PN0B_S
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust Vacation
– fundername: Medical Research Council
  funderid: G0901892; G0800399
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: G021691
– fundername: Biological Sciences Research Council
– fundername: Chinese Society of Anesthesiology
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: G021691
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: G0601498
– fundername: Medical Research Council
  grantid: G0800399
– fundername: Medical Research Council
  grantid: G0901892
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
24P
WIN
AAPBV
AAVGM
ABFLS
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IPNFZ
IQODW
PQEST
UMP
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-i3940-1b4d0b69e1c9803bb5a0eaeaa6e2884583a62effee513bd6346d037ba7d9df003
IEDL.DBID 33P
ISSN 0953-816X
IngestDate Tue Sep 17 21:31:12 EDT 2024
Fri Aug 16 21:51:47 EDT 2024
Tue Aug 27 13:47:01 EDT 2024
Tue Sep 20 21:36:24 EDT 2022
Sat Aug 24 00:50:10 EDT 2024
Wed Oct 30 09:55:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords α2-Adrenergic receptor
Agonist
Sleep
alpha2a adrenergic receptor
Adrenergic receptor
wakefulness
sedation
sleep
Language English
License Attribution
CC BY 4.0
2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i3940-1b4d0b69e1c9803bb5a0eaeaa6e2884583a62effee513bd6346d037ba7d9df003
Notes ark:/67375/WNG-QXF7PN0B-S
Data S1. Link to supplementary videos.
Chinese Society of Anesthesiology
ArticleID:EJN12570
Biotechnology and Biological Sciences Research Council - No. G021691
Medical Research Council - No. G0901892; No. G0800399
Wellcome Trust Vacation
Biological Sciences Research Council
istex:10C0BBD7C1222BB191228604DCD5CBF788127F26
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
C.G. and T.C.G. contributed equally to this work.
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12570
PMID 24674448
PQID 1547544665
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4215598
proquest_miscellaneous_1547544665
pubmed_primary_24674448
pascalfrancis_primary_28676215
wiley_primary_10_1111_ejn_12570_EJN12570
istex_primary_ark_67375_WNG_QXF7PN0B_S
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: France
– name: Oxford, UK
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Blackwell
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
– name: BlackWell Publishing Ltd
References Broman, K.W. & Sen, S. (2009) A Guide to QTL Mapping with R/qtl. Springer Science+Business Media, New York.
Weber, J.N., Peterson, B.K. & Hoekstra, H.E. (2013) Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature, 493, 402-405.
Wulff, P., Goetz, T., Leppa, E., Linden, A.M., Renzi, M., Swinny, J.D., Vekovischeva, O.Y., Sieghart, W., Somogyi, P., Korpi, E.R., Farrant, M. & Wisden, W. (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat. Neurosci., 10, 923-929.
Maret, S., Franken, P., Dauvilliers, Y., Ghyselinck, N.B., Chambon, P. & Tafti, M. (2005) Retinoic acid signaling affects cortical synchrony during sleep. Science, 310, 111-113.
Vyssotski, A.L., Dell'Omo, G., Dell'Ariccia, G., Abramchuk, A.N., Serkov, A.N., Latanov, A.V., Loizzo, A., Wolfer, D.P. & Lipp, H.P. (2009) EEG responses to visual landmarks in flying pigeons. Curr. Biol., 19, 1159-1166.
Tan, C.M., Wilson, M.H., MacMillan, L.B., Kobilka, B.K. & Limbird, L.E. (2002) Heterozygous alpha 2A-adrenergic receptor mice unveil unique therapeutic benefits of partial agonists. Proc. Natl. Acad. Sci. USA, 99, 12471-12476.
Schmeichel, B.E. & Berridge, C.W. (2013) Wake-promoting actions of noradrenergic alpha1 - and beta-receptors within the lateral hypothalamic area. Eur. J. Neurosci., 37, 891-900.
Berridge, C.W., Schmeichel, B.E. & Espana, R.A. (2012) Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev., 16, 187-197.
Lakhlani, P.P., MacMillan, L.B., Guo, T.Z., McCool, B.A., Lovinger, D.M., Maze, M. & Limbird, L.E. (1997) Substitution of a mutant alpha2a-adrenergic receptor via "hit and run" gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc. Natl. Acad. Sci. USA, 94, 9950-9955.
Anderson, S.L., Coli, R., Daly, I.W., Kichula, E.A., Rork, M.J., Volpi, S.A., Ekstein, J. & Rubin, B.Y. (2001) Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet., 68, 753-758.
Linden, A.M., Aller, M.I., Leppa, E., Vekovischeva, O., Aitta-Aho, T., Veale, E.L., Mathie, A., Rosenberg, P., Wisden, W. & Korpi, E.R. (2006) The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the alpha(2) adrenergic sedative dexmedetomidine, and cannabinoid agonists. J. Pharmacol. Exp. Ther., 317, 615-626.
Nelson, L.E., Lu, J., Guo, T., Saper, C.B., Franks, N.P. & Maze, M. (2003) The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology, 98, 428-436.
Waud, D.R. (1972) On biological assays involving quantal responses. J. Pharmacol. Exp. Ther., 183, 577-607.
Huber, R., Deboer, T. & Tobler, I. (2000) Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res., 857, 8-19.
Winsky-Sommerer, R., Vyazovskiy, V.V., Homanics, G.E. & Tobler, I. (2007) The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors. Eur. J. Neurosci., 25, 1893-1899.
Winrow, C.J., Williams, D.L., Kasarskis, A., Millstein, J., Laposky, A.D., Yang, H.S., Mrazek, K., Zhou, L., Owens, J.R., Radzicki, D., Preuss, F., Schadt, E.E., Shimomura, K., Vitaterna, M.H., Zhang, C., Koblan, K.S., Renger, J.J. & Turek, F.W. (2009) Uncovering the genetic landscape for multiple sleep-wake traits. PLoS ONE, 4, e5161.
Arends, D., Prins, P., Jansen, R.C. & Broman, K.W. (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics, 26, 2990-2992.
Crawley, J.N., Belknap, J.K., Collins, A., Crabbe, J.C., Frankel, W., Henderson, N., Hitzemann, R.J., Maxson, S.C., Miner, L.L., Silva, A.J., Wehner, J.M., Wynshaw-Boris, A. & Paylor, R. (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology, 132, 107-124.
Zecharia, A.Y., Yu, X., Gotz, T., Ye, Z., Carr, D.R., Wulff, P., Bettler, B., Vyssotski, A.L., Brickley, S.G., Franks, N.P. & Wisden, W. (2012) GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J. Neurosci., 32, 13062-13075.
Kas, M.J., de Mooij-van Malsen, J.G., de Krom, M., van Gassen, K.L., van Lith, H.A., Olivier, B., Oppelaar, H., Hendriks, J., de Wit, M., Groot Koerkamp, M.J., Holstege, F.C., van Oost, B.A. & de Graan, P.N. (2009) High-resolution genetic mapping of mammalian motor activity levels in mice. Genes Brain Behav., 8, 13-22.
Szabadi, E. (2013) Functional neuroanatomy of the central noradrenergic system. J. Psychopharmacol., 27, 659-693.
Tafti, M., Petit, B., Chollet, D., Neidhart, E., de Bilbao, F., Kiss, J.Z., Wood, P.A. & Franken, P. (2003) Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Nat. Genet., 34, 320-325.
Wang, R., Macmillan, L.B., Fremeau, R.T., Magnuson, M.A., Lindner, J. & Limbird, L.E. (1996) Expression of alpha(2)-adrenergic receptor subtypes in the mouse brain: evaluation of spatial and temporal information imparted by 3 kb of 5' regulatory sequence for the alpha(2A)AR-receptor gene in transgenic animals. Neuroscience, 74, 199-218.
Kuo, Y.M., Zhou, B., Cosco, D. & Gitschier, J. (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. USA, 98, 6836-6841.
Avsaroglu, H., Bull, S., Maas-Bakker, R.F., Scherpenisse, P., Van Lith, H.A., Bergwerff, A.A., Hellebrekers, L.J., Van Zutphen, L.F. & Fink-Gremmels, J. (2008) Differences in hepatic cytochrome P450 activity correlate with the strain-specific biotransformation of medetomidine in AX/JU and IIIVO/JU inbred rabbits. J. Vet. Pharmacol. Ther., 31, 368-377.
Mason, K.P., O'Mahony, E., Zurakowski, D. & Libenson, M.H. (2009) Effects of dexmedetomidine sedation on the EEG in children. Paediatr. Anaesth., 19, 1175-1183.
Drew, G.M., Gower, A.J. & Marriott, A.S. (1979) Alpha 2-adrenoceptors mediate clonidine-induced sedation in the rat. Brit. J. Pharmacol., 67, 133-141.
Venn, R.M. & Grounds, R.M. (2001) Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: patient and clinician perceptions. Brit. J. Anaesth., 87, 684-690.
Gilsbach, R., Roser, C., Beetz, N., Brede, M., Hadamek, K., Haubold, M., Leemhuis, J., Philipp, M., Schneider, J., Urbanski, M., Szabo, B., Weinshenker, D. & Hein, L. (2009) Genetic dissection of alpha2-adrenoceptor functions in adrenergic versus nonadrenergic cells. Mol. Pharmacol., 75, 1160-1170.
Kitchigina, V.F., Kutyreva, E.V. & Brazhnik, E.S. (2003) Modulation of theta rhythmicity in the medial septal neurons and the hippocampal electroencephalogram in the awake rabbit via actions at noradrenergic alpha2-receptors. Neuroscience, 120, 509-521.
Franks, N.P. (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci., 9, 370-386.
Maze, M. & Regan, J.W. (1991) Role of signal transduction in anesthetic action. Alpha 2 adrenergic agonists. Ann. NY Acad. Sci., 625, 409-422.
Nicholas, A.P., Pieribone, V. & Hokfelt, T. (1993) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J. Comp. Neurol., 328, 575-594.
Pang, D.S., Robledo, C.J., Carr, D.R., Gent, T.C., Vyssotski, A.L., Caley, A., Zecharia, A.Y., Wisden, W., Brickley, S.G. & Franks, N.P. (2009) An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc. Natl. Acad. Sci. USA, 106, 17546-17551.
Saper, C.B., Fuller, P.M., Pedersen, N.P., Lu, J. & Scammell, T.E. (2010) Sleep state switching. Neuron, 68, 1023-1042.
Sainsbury, R.S. & Partlo, L.A. (1991) The effects of alpha 2 agonists and antagonists on hippocampal theta activity in the freely moving rat. Brain Res. Bull., 26, 37-42.
Kamibayashi, T. & Maze, M. (2000) Clinical uses of alpha2 -adrenergic agonists. Anesthesiology, 93, 1345-1349.
Duhamel, M.C., Troncy, E. & Beaudry, F. (2010) Metabolic stability and determination of cytochrome P450 isoenzymes' contribution to the metabolism of medetomidine in dog liver microsomes. Biomed. Chromatogr., 24, 868-877.
Prows, D.R., Hafertepen, A.P., Winterberg, A.V., Gibbons, W.J. Jr., Liu, C. & Nick, T.G. (2007) Genetic analysis of hyperoxic acute lung injury survival in reciprocal intercross mice. Physiol. Genomics, 30, 271-281.
Wisden, W. & Morris, B. (1994). In Situ Hybridization Protocols for the Brain. Academic Press, London.
Hessel, E.V., van Lith, H.A., Wolterink-Donselaar, I.G., de Wit, M., Hendrickx, D.A., Kas, M.J. & de Graan, P.N. (2012) Mapping an X-linked locus that influences heat-induced febrile seizures in mice. Epilepsia, 53, 1399-1410.
Ralph, M.R. & Menaker, M. (1988) A mutation of the circadian system in golden hamsters. Science, 241, 1225-1227.
Philipp, M. & Hein, L. (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol. Therapeut., 101, 65-74.
Logue, S.F., Owen, E.H., Rasmussen, D.L. & Wehner, J.M. (1997) Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analyses. Neuroscience, 80, 1075-1086.
Wrighton, S.A. & Stevens, J.C. (1992) The human hepatic cytochromes P450 involved in drug metabolism. Crit. Rev. Toxicol., 22, 1-21.
Korpi, E.R., Koikkalainen, P., Vekovischeva, O.Y., Makela, R., Kleinz, R., Uusi-Oukari, M. & Wisden, W. (1999) Cerebellar granule-cell-specific GABAA receptors attenuate benzodiazepine-induced ataxia: evidence from alpha 6-subunit-deficient mice. Eur. J. Neurosci., 11, 233-240.
Franken, P., Malafosse, A. & Tafti, M. (1998) Genetic variation in EEG activity during sleep in inbred mice. Am. J. Physiol., 275, R1127-R1137.
Wrzosek, M., Nicpon, J., Bergamasco, L., Sammartano, F., Cizinauskas, S. &
1997; 80
1993; 328
2013; 27
2000; 857
2002; 99
2008; 9
1996; 74
2000; 93
2012; 16
2008; 31
2007; 30
1998; 275
2012; 53
2003; 98
2001; 87
2010; 26
1979; 67
1997; 94
2010; 24
2010; 68
1999; 11
1972; 183
2009; 19
2007; 25
2003; 120
2001; 98
1991; 625
2004; 101
2006; 317
2012
2009; 180
2005; 310
1997; 132
2009
1994
1999; 63
1988; 241
2007; 10
2001; 68
1972; 238
2012; 32
2003; 34
2013; 37
2009; 75
1991; 26
2009; 8
2013; 493
2008; 42
2009; 4
1992; 22
2009; 106
16397088 - J Pharmacol Exp Ther. 2006 May;317(2):615-26
18638298 - J Vet Pharmacol Ther. 2008 Aug;31(4):368-77
9756543 - Am J Physiol. 1998 Oct;275(4 Pt 2):R1127-37
17408425 - Eur J Neurosci. 2007 Mar;25(6):1893-9
19805135 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17546-51
4636393 - J Pharmacol Exp Ther. 1972 Dec;183(3):577-607
22780306 - Epilepsia. 2012 Aug;53(8):1399-410
23252935 - Eur J Neurosci. 2013 Mar;37(6):891-900
19360106 - PLoS One. 2009;4(4):e5161
11046225 - Anesthesiology. 2000 Nov;93(5):1345-9
1616599 - Crit Rev Toxicol. 1992;22(1):1-21
18983259 - Annu Rev Genet. 2008;42:361-88
20020418 - Biomed Chromatogr. 2010 Aug;24(8):868-77
1711813 - Ann N Y Acad Sci. 1991;625:409-22
23325221 - Nature. 2013 Jan 17;493(7432):402-5
4558354 - Nature. 1972 Jul 28;238(5361):226-7
23761387 - J Psychopharmacol. 2013 Aug;27(8):659-93
22993424 - J Neurosci. 2012 Sep 19;32(38):13062-75
17572671 - Nat Neurosci. 2007 Jul;10(7):923-9
10700548 - Brain Res. 2000 Feb 28;857(1-2):8-19
12796782 - Nat Genet. 2003 Jul;34(3):320-5
9987027 - Eur J Neurosci. 1999 Jan;11(1):233-40
16210540 - Science. 2005 Oct 7;310(5745):111-3
20017865 - Paediatr Anaesth. 2009 Dec;19(12):1175-83
22296742 - Sleep Med Rev. 2012 Apr;16(2):187-97
11391004 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6836-41
18721260 - Genes Brain Behav. 2009 Feb;8(1):13-22
18425091 - Nat Rev Neurosci. 2008 May;9(5):370-86
18314356 - Vet J. 2009 May;180(2):221-30
17488888 - Physiol Genomics. 2007 Aug 20;30(3):271-81
11179021 - Am J Hum Genet. 2001 Mar;68(3):753-8
19251826 - Mol Pharmacol. 2009 May;75(5):1160-70
21172606 - Neuron. 2010 Dec 22;68(6):1023-42
8843087 - Neuroscience. 1996 Sep;74(1):199-218
19559612 - Curr Biol. 2009 Jul 28;19(14):1159-66
3413487 - Science. 1988 Sep 2;241(4870):1225-7
20966004 - Bioinformatics. 2010 Dec 1;26(23):2990-2
12552203 - Anesthesiology. 2003 Feb;98(2):428-36
1673083 - Brain Res Bull. 1991 Jan;26(1):37-42
10340519 - Pharmacol Biochem Behav. 1999 May;63(1):21-6
12890520 - Neuroscience. 2003;120(2):509-21
12205290 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12471-6
9275232 - Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9950-5
40643 - Br J Pharmacol. 1979 Sep;67(1):133-41
8381444 - J Comp Neurol. 1993 Feb 22;328(4):575-94
9266608 - Psychopharmacology (Berl). 1997 Jul;132(2):107-24
11878517 - Br J Anaesth. 2001 Nov;87(5):684-90
14729393 - Pharmacol Ther. 2004 Jan;101(1):65-74
9284061 - Neuroscience. 1997 Oct;80(4):1075-86
References_xml – year: 2009
– volume: 11
  start-page: 233
  year: 1999
  end-page: 240
  article-title: Cerebellar granule‐cell‐specific GABAA receptors attenuate benzodiazepine‐induced ataxia: evidence from alpha 6‐subunit‐deficient mice
  publication-title: Eur. J. Neurosci.
– volume: 625
  start-page: 409
  year: 1991
  end-page: 422
  article-title: Role of signal transduction in anesthetic action. Alpha 2 adrenergic agonists
  publication-title: Ann. NY Acad. Sci.
– volume: 87
  start-page: 684
  year: 2001
  end-page: 690
  article-title: Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: patient and clinician perceptions
  publication-title: Brit. J. Anaesth.
– volume: 53
  start-page: 1399
  year: 2012
  end-page: 1410
  article-title: Mapping an X‐linked locus that influences heat‐induced febrile seizures in mice
  publication-title: Epilepsia
– volume: 98
  start-page: 428
  year: 2003
  end-page: 436
  article-title: The alpha2‐adrenoceptor agonist dexmedetomidine converges on an endogenous sleep‐promoting pathway to exert its sedative effects
  publication-title: Anesthesiology
– volume: 27
  start-page: 659
  year: 2013
  end-page: 693
  article-title: Functional neuroanatomy of the central noradrenergic system
  publication-title: J. Psychopharmacol.
– volume: 19
  start-page: 1175
  year: 2009
  end-page: 1183
  article-title: Effects of dexmedetomidine sedation on the EEG in children
  publication-title: Paediatr. Anaesth.
– year: 1994
– volume: 94
  start-page: 9950
  year: 1997
  end-page: 9955
  article-title: Substitution of a mutant alpha2a‐adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic‐sparing responses in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 132
  start-page: 107
  year: 1997
  end-page: 124
  article-title: Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies
  publication-title: Psychopharmacology
– volume: 241
  start-page: 1225
  year: 1988
  end-page: 1227
  article-title: A mutation of the circadian system in golden hamsters
  publication-title: Science
– volume: 26
  start-page: 2990
  year: 2010
  end-page: 2992
  article-title: R/qtl: high‐throughput multiple QTL mapping
  publication-title: Bioinformatics
– volume: 16
  start-page: 187
  year: 2012
  end-page: 197
  article-title: Noradrenergic modulation of wakefulness/arousal
  publication-title: Sleep Med. Rev.
– volume: 31
  start-page: 368
  year: 2008
  end-page: 377
  article-title: Differences in hepatic cytochrome P450 activity correlate with the strain‐specific biotransformation of medetomidine in AX/JU and IIIVO/JU inbred rabbits
  publication-title: J. Vet. Pharmacol. Ther.
– volume: 80
  start-page: 1075
  year: 1997
  end-page: 1086
  article-title: Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analyses
  publication-title: Neuroscience
– volume: 37
  start-page: 891
  year: 2013
  end-page: 900
  article-title: Wake‐promoting actions of noradrenergic alpha1 ‐ and beta‐receptors within the lateral hypothalamic area
  publication-title: Eur. J. Neurosci.
– volume: 183
  start-page: 577
  year: 1972
  end-page: 607
  article-title: On biological assays involving quantal responses
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 22
  start-page: 1
  year: 1992
  end-page: 21
  article-title: The human hepatic cytochromes P450 involved in drug metabolism
  publication-title: Crit. Rev. Toxicol.
– volume: 106
  start-page: 17546
  year: 2009
  end-page: 17551
  article-title: An unexpected role for TASK‐3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 93
  start-page: 1345
  year: 2000
  end-page: 1349
  article-title: Clinical uses of alpha2 ‐adrenergic agonists
  publication-title: Anesthesiology
– volume: 493
  start-page: 402
  year: 2013
  end-page: 405
  article-title: Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice
  publication-title: Nature
– volume: 857
  start-page: 8
  year: 2000
  end-page: 19
  article-title: Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations
  publication-title: Brain Res.
– volume: 30
  start-page: 271
  year: 2007
  end-page: 281
  article-title: Genetic analysis of hyperoxic acute lung injury survival in reciprocal intercross mice
  publication-title: Physiol. Genomics
– volume: 328
  start-page: 575
  year: 1993
  end-page: 594
  article-title: Distributions of mRNAs for alpha‐2 adrenergic receptor subtypes in rat brain: an in situ hybridization study
  publication-title: J. Comp. Neurol.
– volume: 98
  start-page: 6836
  year: 2001
  end-page: 6841
  article-title: The copper transporter CTR1 provides an essential function in mammalian embryonic development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 317
  start-page: 615
  year: 2006
  end-page: 626
  article-title: The in vivo contributions of TASK‐1‐containing channels to the actions of inhalation anesthetics, the alpha(2) adrenergic sedative dexmedetomidine, and cannabinoid agonists
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 24
  start-page: 868
  year: 2010
  end-page: 877
  article-title: Metabolic stability and determination of cytochrome P450 isoenzymes’ contribution to the metabolism of medetomidine in dog liver microsomes
  publication-title: Biomed. Chromatogr.
– volume: 4
  start-page: e5161
  year: 2009
  article-title: Uncovering the genetic landscape for multiple sleep‐wake traits
  publication-title: PLoS ONE
– volume: 180
  start-page: 221
  year: 2009
  end-page: 230
  article-title: Visual and quantitative electroencephalographic analysis of healthy young and adult cats under medetomidine sedation
  publication-title: Vet. J.
– volume: 275
  start-page: R1127
  year: 1998
  end-page: R1137
  article-title: Genetic variation in EEG activity during sleep in inbred mice
  publication-title: Am. J. Physiol.
– volume: 75
  start-page: 1160
  year: 2009
  end-page: 1170
  article-title: Genetic dissection of alpha2‐adrenoceptor functions in adrenergic versus nonadrenergic cells
  publication-title: Mol. Pharmacol.
– volume: 74
  start-page: 199
  year: 1996
  end-page: 218
  article-title: Expression of alpha(2)‐adrenergic receptor subtypes in the mouse brain: evaluation of spatial and temporal information imparted by 3 kb of 5’ regulatory sequence for the alpha(2A)AR‐receptor gene in transgenic animals
  publication-title: Neuroscience
– volume: 101
  start-page: 65
  year: 2004
  end-page: 74
  article-title: Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes
  publication-title: Pharmacol. Therapeut.
– volume: 68
  start-page: 753
  year: 2001
  end-page: 758
  article-title: Familial dysautonomia is caused by mutations of the IKAP gene
  publication-title: Am. J. Hum. Genet.
– volume: 34
  start-page: 320
  year: 2003
  end-page: 325
  article-title: Deficiency in short‐chain fatty acid beta‐oxidation affects theta oscillations during sleep
  publication-title: Nat. Genet.
– volume: 25
  start-page: 1893
  year: 2007
  end-page: 1899
  article-title: The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta‐subunit‐containing receptors
  publication-title: Eur. J. Neurosci.
– volume: 68
  start-page: 1023
  year: 2010
  end-page: 1042
  article-title: Sleep state switching
  publication-title: Neuron
– volume: 238
  start-page: 226
  year: 1972
  end-page: 227
  article-title: Genetic studies of sleep in mice
  publication-title: Nature
– volume: 67
  start-page: 133
  year: 1979
  end-page: 141
  article-title: Alpha 2‐adrenoceptors mediate clonidine‐induced sedation in the rat
  publication-title: Brit. J. Pharmacol.
– volume: 310
  start-page: 111
  year: 2005
  end-page: 113
  article-title: Retinoic acid signaling affects cortical synchrony during sleep
  publication-title: Science
– year: 2012
– volume: 26
  start-page: 37
  year: 1991
  end-page: 42
  article-title: The effects of alpha 2 agonists and antagonists on hippocampal theta activity in the freely moving rat
  publication-title: Brain Res. Bull.
– volume: 63
  start-page: 21
  year: 1999
  end-page: 26
  article-title: Pharmacologic and behavioral responses of inbred C57BL/6J and strain 129/SvJ mouse lines
  publication-title: Pharmacol. Biochem. Be.
– volume: 9
  start-page: 370
  year: 2008
  end-page: 386
  article-title: General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal
  publication-title: Nat. Rev. Neurosci.
– volume: 19
  start-page: 1159
  year: 2009
  end-page: 1166
  article-title: EEG responses to visual landmarks in flying pigeons
  publication-title: Curr. Biol.
– volume: 99
  start-page: 12471
  year: 2002
  end-page: 12476
  article-title: Heterozygous alpha 2A‐adrenergic receptor mice unveil unique therapeutic benefits of partial agonists
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 42
  start-page: 361
  year: 2008
  end-page: 388
  article-title: Genetics of sleep
  publication-title: Annu. Rev. Genet.
– volume: 8
  start-page: 13
  year: 2009
  end-page: 22
  article-title: High‐resolution genetic mapping of mammalian motor activity levels in mice
  publication-title: Genes Brain Behav.
– volume: 10
  start-page: 923
  year: 2007
  end-page: 929
  article-title: From synapse to behavior: rapid modulation of defined neuronal types with engineered GABA receptors
  publication-title: Nat. Neurosci.
– volume: 32
  start-page: 13062
  year: 2012
  end-page: 13075
  article-title: GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep‐wake switch or propofol‐induced loss of consciousness
  publication-title: J. Neurosci.
– volume: 120
  start-page: 509
  year: 2003
  end-page: 521
  article-title: Modulation of theta rhythmicity in the medial septal neurons and the hippocampal electroencephalogram in the awake rabbit via actions at noradrenergic alpha2‐receptors
  publication-title: Neuroscience
SSID ssj0008645
Score 2.2903812
Snippet How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non‐specific type of phenomenon. However, the...
How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non-specific type of phenomenon. However, the...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2311
SubjectTerms Adrenergic alpha-Agonists - pharmacology
alpha2a adrenergic receptor
Animals
Behavioral Neuroscience
Biological and medical sciences
Brain - drug effects
Brain - physiology
Chromosomes, Mammalian
Dexmedetomidine - pharmacology
Electroencephalography
Fundamental and applied biological sciences. Psychology
Genes, Dominant
Genome-Wide Association Study
Hypnotics and Sedatives - pharmacology
Mice, 129 Strain
Mice, Inbred C57BL
Pharmacogenetics
Physical Stimulation
Receptors, Adrenergic, alpha-2 - genetics
Receptors, Adrenergic, alpha-2 - metabolism
Reflex, Righting - drug effects
Reflex, Righting - genetics
Reflex, Righting - physiology
Rotarod Performance Test
sedation
sleep
Sleep - drug effects
Sleep - genetics
Sleep - physiology
Sleep. Vigilance
Species Specificity
Vertebrates: nervous system and sense organs
wakefulness
Wakefulness - drug effects
Wakefulness - genetics
Wakefulness - physiology
Title Staying awake - a genetic region that hinders α2 adrenergic receptor agonist-induced sleep
URI https://api.istex.fr/ark:/67375/WNG-QXF7PN0B-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12570
https://www.ncbi.nlm.nih.gov/pubmed/24674448
https://search.proquest.com/docview/1547544665
https://pubmed.ncbi.nlm.nih.gov/PMC4215598
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BL3DhpwUaKNUioYqLkX_Xa3EqJaHiEBUVRG6r2ey6CQW7ihMBtz4CUp-EF-Eh-iTMrBPTCA5I3Cx55uDdmdkZ78z3ATyNS2mjxPClu5JBGo_LwMTKBmmuMpPToZJInkY-PM6HI_WqzzA5L1azMC0-RPfDjT3Dx2t2cDTNFSd3H6vnEXOwUfylKsGPbyRHXRRW0hMUM5xaoCI5WqIKcRdPp0kJKa_lV26IxIbWpGzJLP6Wbf7ZNHk1mfWn0eD2f33HHbi1TELFfms1d-GaqzZha7-iAvzzN7EnfFuo_9--CTcOVpRwW6ApNeWxKIFf8NSJy_MLgYIskAchBVM81JWYT3AuJlM_MyN-_ogF8qy4m514EW6iqWcCT2pG7L08_06CZFxWNJ-cO7sH7wf9dweHwZKhIZgyo3oQmdSGRhYuGhcqTIzJMHToEKWLleIrWZQxN6a4jAzCyiSVNkxyg7ktbEkB5T5sVHXltkFEJVO0Y1hYqtAYZD9RZVFiMU4LpSJMe7Dn90qftSgcGmen3JSWZ_rD8LV-OxrkR8PwpT7uwe7aZnYKsZIU-aOsB09Wu6tp_fiCBCtXLxpN6STjAUpJMg_a3f6tzbQsVMv2IF-zg06AcbrX31TTicfrTmO--yXNZ94OOo1V_UUWoL0F6P6boX94-O-ij-Am5XBp20G8Axvz2cI9huuNXex6h_gFtHEQXw
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RcigXflooW6AYCVVcgvLjOI7USym7LFCiohaxN8tZO92lNKn2R4VbHwGpT9IX4SH6JMw4u6ErOCBxi5SZQ-xvnLE9830Az8NCmCDK6dJdCo-H_cLLQ2k8nsg4T_CnEgnqRu4eJFlPvm4TTc72vBem5odoDtwoMtx6TQFOB9LXotx-KV8GJMK2BDe5QCBSA0e036zDUjiJYiJU82QgejNeIarjaVwxJaXR_EYlkXqMo1LUchZ_yzf_LJu8ns66_1Hnzv99yV24PctD2U4NnHtww5arsLZT4h785DvbYq4y1B25r8LK7lwVbg0UZqfUGcX0mT627Or8gmmGIKReSEYqD1XJJgM9YYOha5thPy9Dpqld3I6OnAnV0VQjpo8qIu29Ov-Bhogvw8ZfrT29D5867cPdrjcTafCGJKruBTk3fi5SG_RT6Ud5Hmvfaqu1sKGUdCurRUi1KTZGTBgRcWH8KMl1YlJT4JryAJbLqrQPgQUFqbRrPzW4SSOe_UgWaaHTPk-lDDRvwZabLHVaE3EoPTqmurQkVp-zN-pjr5PsZ_4rddCCzYXZbBxCKXDxD-IWPJtPr8LxozsSXdpqOlaYURIloBBos15P929vUmbB7WwLkgUgNAZE1b34phwOHGU3D-n6Fz1fOCA0HvMtGCJAOQSo9rvMPWz8u-lTWOkefthTe2-z94_gFqZ0vC4ofgzLk9HUPoGlsZluuuj4BccPFIc
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgEXHi3Q5VGMhCouqfJwHEecSrvb8lC0qCD2Zjlrp7u0JKt9CLj1JyDxS_gj_RH9JZ1xdtOu4IDELVJmDrFnxjPxzPcBvAgLYYIop0t3KTwe9gsvD6XxeCLjPMFDJRI0jXxwmGQ9udcmmJxXi1mYGh-i-eFGnuHiNTn4yBRXnNx-KbcD4mBbgesc03ACzo-ibhOGpXAMxYSn5slA9OawQtTG06hiRkqL-Z06IvUEF6Wo2Sz-lm7-2TV5NZt1x1Hnzn99yF24Pc9C2U5tNvfgmi3XYH2nxAr86w-2xVxfqPvhvgY3dxeccOugMDeluSimv-ljy85PfzHN0ARpEpIRx0NVsulAT9lg6IZm2NnvkGkaFrfjIydCXTTVmOmjiiB7z09_oiBal2GTE2tH9-FTp_1x98CbUzR4Q6JU94KcGz8XqQ36qfSjPI-1b7XVWthQSrqT1SKkzhQbo0UYEXFh_CjJdWJSU2BEeQCrZVXaDWBBQRzt2k8NlmiEsh_JIi102ueplIHmLdhye6VGNQyH0uNj6kpLYvU521cfep2km_mv1WELNpc2s1EIpcDQH8QteL7YXYXrRzckurTVbKIwnyRAQCFQ5mG925faxMuCxWwLkiU7aAQIqHv5TTkcOMBuHtLlL2q-dHbQaCwKMLQA5SxAtd9m7uHRv4s-gxvdvY56_yZ79xhuYT7H627iJ7A6Hc_sU1iZmNmm840Lab4TLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staying+awake+%E2%80%93+a+genetic+region+that+hinders+%CE%B12+adrenergic+receptor+agonist%E2%80%90induced+sleep&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Gelegen%2C+Cigdem&rft.au=Gent%2C+Thomas+C.&rft.au=Ferretti%2C+Valentina&rft.au=Zhang%2C+Zhe&rft.date=2014-07-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=40&rft.issue=1&rft.spage=2311&rft.epage=2319&rft_id=info:doi/10.1111%2Fejn.12570&rft.externalDBID=10.1111%252Fejn.12570&rft.externalDocID=EJN12570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon