Staying awake - a genetic region that hinders α2 adrenergic receptor agonist-induced sleep
How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non‐specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors, has unusual properties that make it useful for investigating this question....
Saved in:
Published in: | The European journal of neuroscience Vol. 40; no. 1; pp. 2311 - 2319 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Blackwell Publishing Ltd
01-07-2014
Blackwell BlackWell Publishing Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non‐specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors, has unusual properties that make it useful for investigating this question. Dexmedetomidine is considered to produce an ‘arousable’ sleep‐like state, so that patients or animals given dexmedetomidine become alert following modest stimulation. We hypothesized that it might be more difficult to make mice unconscious with dexmedetomidine if there was a sufficient external stimulus. Employing a motorized rotating cylinder, which provided a continuous and controlled arousal stimulus, we quantitatively measured the ability of such a stimulus to prevent dexmedetomidine loss of righting reflex in two inbred strains of mice (C57BL/6 and 129X1). We found that whereas the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine‐induced hypnosis, the 129X1 strain stayed awake even with minimal stimuli. Remarkably, this could be calibrated as a simple threshold trait, i.e. a binary ‘yes–no’ response, which after crossing the two mouse strains behaved as a dominant‐like trait. We carried out a genome‐wide linkage analysis on the F2 progeny to determine if the ability of a stimulus to prevent dexmedetomidine hypnosis could be mapped to one or more chromosomal regions. We identified a locus on chromosome 4 with an associated Logarithm of Odds score exceeding the pre‐established threshold level. These results show that complex traits, such as the ability of a stimulus to reverse drug‐induced hypnosis, may have precise genetic determinants.
This paper shows that two in‐bred strains of mouse, C57BL/6 and 129X1 respond very differently to an external stimulus when given the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors. Both strains respond identically in the absence of a stimulus, however, the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine‐induced hypnosis whereas the 129X1 strain stayed awake even with minimal stimuli. A genome‐wide linkage analysis identified a key determinant on chromosome 4 which behaved as a dominant‐like trait. |
---|---|
AbstractList | How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non‐specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors, has unusual properties that make it useful for investigating this question. Dexmedetomidine is considered to produce an ‘arousable’ sleep‐like state, so that patients or animals given dexmedetomidine become alert following modest stimulation. We hypothesized that it might be more difficult to make mice unconscious with dexmedetomidine if there was a sufficient external stimulus. Employing a motorized rotating cylinder, which provided a continuous and controlled arousal stimulus, we quantitatively measured the ability of such a stimulus to prevent dexmedetomidine loss of righting reflex in two inbred strains of mice (C57BL/6 and 129X1). We found that whereas the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine‐induced hypnosis, the 129X1 strain stayed awake even with minimal stimuli. Remarkably, this could be calibrated as a simple threshold trait, i.e. a binary ‘yes–no’ response, which after crossing the two mouse strains behaved as a dominant‐like trait. We carried out a genome‐wide linkage analysis on the F2 progeny to determine if the ability of a stimulus to prevent dexmedetomidine hypnosis could be mapped to one or more chromosomal regions. We identified a locus on chromosome 4 with an associated Logarithm of Odds score exceeding the pre‐established threshold level. These results show that complex traits, such as the ability of a stimulus to reverse drug‐induced hypnosis, may have precise genetic determinants.
This paper shows that two in‐bred strains of mouse, C57BL/6 and 129X1 respond very differently to an external stimulus when given the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors. Both strains respond identically in the absence of a stimulus, however, the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine‐induced hypnosis whereas the 129X1 strain stayed awake even with minimal stimuli. A genome‐wide linkage analysis identified a key determinant on chromosome 4 which behaved as a dominant‐like trait. How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non-specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α 2 adrenergic receptors, has unusual properties that make it useful for investigating this question. Dexmedetomidine is considered to produce an ‘arousable’ sleep-like state, so that patients or animals given dexmedetomidine become alert following modest stimulation. We hypothesized that it might be more difficult to make mice unconscious with dexmedetomidine if there was a sufficient external stimulus. Employing a motorized rotating cylinder, which provided a continuous and controlled arousal stimulus, we quantitatively measured the ability of such a stimulus to prevent dexmedetomidine loss of righting reflex in two inbred strains of mice (C57BL/6 and 129X1). We found that whereas the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine-induced hypnosis, the 129X1 strain stayed awake even with minimal stimuli. Remarkably, this could be calibrated as a simple threshold trait, i.e. a binary ‘yes–no’ response, which after crossing the two mouse strains behaved as a dominant-like trait. We carried out a genome-wide linkage analysis on the F 2 progeny to determine if the ability of a stimulus to prevent dexmedetomidine hypnosis could be mapped to one or more chromosomal regions. We identified a locus on chromosome 4 with an associated Logarithm of Odds score exceeding the pre-established threshold level. These results show that complex traits, such as the ability of a stimulus to reverse drug-induced hypnosis, may have precise genetic determinants. How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non-specific type of phenomenon. However, the hypnotic drug dexmedetomidine, an agonist at α2 adrenergic receptors, has unusual properties that make it useful for investigating this question. Dexmedetomidine is considered to produce an 'arousable' sleep-like state, so that patients or animals given dexmedetomidine become alert following modest stimulation. We hypothesized that it might be more difficult to make mice unconscious with dexmedetomidine if there was a sufficient external stimulus. Employing a motorized rotating cylinder, which provided a continuous and controlled arousal stimulus, we quantitatively measured the ability of such a stimulus to prevent dexmedetomidine loss of righting reflex in two inbred strains of mice (C57BL/6 and 129X1). We found that whereas the C57BL/6 strain required a strong stimulus to prevent dexmedetomidine-induced hypnosis, the 129X1 strain stayed awake even with minimal stimuli. Remarkably, this could be calibrated as a simple threshold trait, i.e. a binary 'yes-no' response, which after crossing the two mouse strains behaved as a dominant-like trait. We carried out a genome-wide linkage analysis on the F2 progeny to determine if the ability of a stimulus to prevent dexmedetomidine hypnosis could be mapped to one or more chromosomal regions. We identified a locus on chromosome 4 with an associated Logarithm of Odds score exceeding the pre-established threshold level. These results show that complex traits, such as the ability of a stimulus to reverse drug-induced hypnosis, may have precise genetic determinants. |
Author | van Lith, Hein A. Vyssotski, Alexei L. Yang, Qianzi Franks, Nicholas P. Wisden, William Zhang, Zhe Yustos, Raquel Lan, Fei Overington, Dorothy W. U. Gelegen, Cigdem Gent, Thomas C. Ferretti, Valentina |
Author_xml | – sequence: 1 givenname: Cigdem surname: Gelegen fullname: Gelegen, Cigdem organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK – sequence: 2 givenname: Thomas C. surname: Gent fullname: Gent, Thomas C. organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK – sequence: 3 givenname: Valentina surname: Ferretti fullname: Ferretti, Valentina organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK – sequence: 4 givenname: Zhe surname: Zhang fullname: Zhang, Zhe organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK – sequence: 5 givenname: Raquel surname: Yustos fullname: Yustos, Raquel organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK – sequence: 6 givenname: Fei surname: Lan fullname: Lan, Fei organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK – sequence: 7 givenname: Qianzi surname: Yang fullname: Yang, Qianzi organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK – sequence: 8 givenname: Dorothy W. U. surname: Overington fullname: Overington, Dorothy W. U. organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK – sequence: 9 givenname: Alexei L. surname: Vyssotski fullname: Vyssotski, Alexei L. organization: Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland – sequence: 10 givenname: Hein A. surname: van Lith fullname: van Lith, Hein A. organization: Division of Animal Welfare & Laboratory Animal Science, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands – sequence: 11 givenname: William surname: Wisden fullname: Wisden, William email: n.franks@imperial.ac.ukw.wisden@imperial.ac.uk organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK – sequence: 12 givenname: Nicholas P. surname: Franks fullname: Franks, Nicholas P. email: n.franks@imperial.ac.ukw.wisden@imperial.ac.uk organization: Department of Life Sciences, Imperial College London, South Kensington, SW7 2AZ, London, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28676215$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24674448$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkc1u1DAUhS1URKeFBS-AvEFik9aOf-JskGjVH1A1gAqiEgvrJrnJuM04g52hzGP1RXgmzMwwgDfX0v3OOdI9B2TPDx4Jec7ZEU_vGG_9Ec9VwR6RCZeaZaXSZo9MWKlEZri-2ScHMd4yxoyW6gnZz6UupJRmQr5ej7ByvqNwD3dIMwq0Q4-jq2nAzg2ejjMY6cz5BkOkPx9yCk1IROjWSI2LcQgUusG7OGYJW9bY0NgjLp6Sxy30EZ9t5yH5fH726fQyu3p_8fb0zVXmRClZxivZsEqXyOvSMFFVChgCAmjMjZHKCNA5ti2i4qJqtJC6YaKooGjKpmVMHJLXG9_FsppjU6MfA_R2EdwcwsoO4Oz_G-9mthu-W5lzpUqTDF5tDcLwbYlxtHMXa-x78Dgso-VKFkpKrVVCX_ybtQv5c9EEvNwCEGvo2wC-dvEvZ3ShU2zijjfcvetxtdtzZn9XalOldl2pPXs3XX-SItso0qHxx04B4c7qQhTKfple2I8358WHKTux1-IXFtimWw |
ContentType | Journal Article |
Copyright | 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2015 INIST-CNRS 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2014 |
Copyright_xml | – notice: 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: 2015 INIST-CNRS – notice: 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2014 |
DBID | BSCLL 24P WIN IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1111/ejn.12570 |
DatabaseName | Istex Wiley Open Access Wiley Online Library Open Access Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 2319 |
ExternalDocumentID | 24674448 28676215 EJN12570 ark_67375_WNG_QXF7PN0B_S |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust Vacation – fundername: Medical Research Council funderid: G0901892; G0800399 – fundername: Biotechnology and Biological Sciences Research Council funderid: G021691 – fundername: Biological Sciences Research Council – fundername: Chinese Society of Anesthesiology – fundername: Biotechnology and Biological Sciences Research Council grantid: G021691 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: G0601498 – fundername: Medical Research Council grantid: G0800399 – fundername: Medical Research Council grantid: G0901892 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT 24P WIN AAPBV AAVGM ABFLS ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ IQODW PQEST UMP ZA5 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-i3940-1b4d0b69e1c9803bb5a0eaeaa6e2884583a62effee513bd6346d037ba7d9df003 |
IEDL.DBID | 33P |
ISSN | 0953-816X |
IngestDate | Tue Sep 17 21:31:12 EDT 2024 Fri Aug 16 21:51:47 EDT 2024 Tue Aug 27 13:47:01 EDT 2024 Tue Sep 20 21:36:24 EDT 2022 Sat Aug 24 00:50:10 EDT 2024 Wed Oct 30 09:55:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | α2-Adrenergic receptor Agonist Sleep alpha2a adrenergic receptor Adrenergic receptor wakefulness sedation sleep |
Language | English |
License | Attribution CC BY 4.0 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i3940-1b4d0b69e1c9803bb5a0eaeaa6e2884583a62effee513bd6346d037ba7d9df003 |
Notes | ark:/67375/WNG-QXF7PN0B-S Data S1. Link to supplementary videos. Chinese Society of Anesthesiology ArticleID:EJN12570 Biotechnology and Biological Sciences Research Council - No. G021691 Medical Research Council - No. G0901892; No. G0800399 Wellcome Trust Vacation Biological Sciences Research Council istex:10C0BBD7C1222BB191228604DCD5CBF788127F26 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 C.G. and T.C.G. contributed equally to this work. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12570 |
PMID | 24674448 |
PQID | 1547544665 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4215598 proquest_miscellaneous_1547544665 pubmed_primary_24674448 pascalfrancis_primary_28676215 wiley_primary_10_1111_ejn_12570_EJN12570 istex_primary_ark_67375_WNG_QXF7PN0B_S |
PublicationCentury | 2000 |
PublicationDate | July 2014 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: July 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: France – name: Oxford, UK |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Blackwell BlackWell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell – name: BlackWell Publishing Ltd |
References | Broman, K.W. & Sen, S. (2009) A Guide to QTL Mapping with R/qtl. Springer Science+Business Media, New York. Weber, J.N., Peterson, B.K. & Hoekstra, H.E. (2013) Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature, 493, 402-405. Wulff, P., Goetz, T., Leppa, E., Linden, A.M., Renzi, M., Swinny, J.D., Vekovischeva, O.Y., Sieghart, W., Somogyi, P., Korpi, E.R., Farrant, M. & Wisden, W. (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat. Neurosci., 10, 923-929. Maret, S., Franken, P., Dauvilliers, Y., Ghyselinck, N.B., Chambon, P. & Tafti, M. (2005) Retinoic acid signaling affects cortical synchrony during sleep. Science, 310, 111-113. Vyssotski, A.L., Dell'Omo, G., Dell'Ariccia, G., Abramchuk, A.N., Serkov, A.N., Latanov, A.V., Loizzo, A., Wolfer, D.P. & Lipp, H.P. (2009) EEG responses to visual landmarks in flying pigeons. Curr. Biol., 19, 1159-1166. Tan, C.M., Wilson, M.H., MacMillan, L.B., Kobilka, B.K. & Limbird, L.E. (2002) Heterozygous alpha 2A-adrenergic receptor mice unveil unique therapeutic benefits of partial agonists. Proc. Natl. Acad. Sci. USA, 99, 12471-12476. Schmeichel, B.E. & Berridge, C.W. (2013) Wake-promoting actions of noradrenergic alpha1 - and beta-receptors within the lateral hypothalamic area. Eur. J. Neurosci., 37, 891-900. Berridge, C.W., Schmeichel, B.E. & Espana, R.A. (2012) Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev., 16, 187-197. Lakhlani, P.P., MacMillan, L.B., Guo, T.Z., McCool, B.A., Lovinger, D.M., Maze, M. & Limbird, L.E. (1997) Substitution of a mutant alpha2a-adrenergic receptor via "hit and run" gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc. Natl. Acad. Sci. USA, 94, 9950-9955. Anderson, S.L., Coli, R., Daly, I.W., Kichula, E.A., Rork, M.J., Volpi, S.A., Ekstein, J. & Rubin, B.Y. (2001) Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet., 68, 753-758. Linden, A.M., Aller, M.I., Leppa, E., Vekovischeva, O., Aitta-Aho, T., Veale, E.L., Mathie, A., Rosenberg, P., Wisden, W. & Korpi, E.R. (2006) The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the alpha(2) adrenergic sedative dexmedetomidine, and cannabinoid agonists. J. Pharmacol. Exp. Ther., 317, 615-626. Nelson, L.E., Lu, J., Guo, T., Saper, C.B., Franks, N.P. & Maze, M. (2003) The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology, 98, 428-436. Waud, D.R. (1972) On biological assays involving quantal responses. J. Pharmacol. Exp. Ther., 183, 577-607. Huber, R., Deboer, T. & Tobler, I. (2000) Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res., 857, 8-19. Winsky-Sommerer, R., Vyazovskiy, V.V., Homanics, G.E. & Tobler, I. (2007) The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors. Eur. J. Neurosci., 25, 1893-1899. Winrow, C.J., Williams, D.L., Kasarskis, A., Millstein, J., Laposky, A.D., Yang, H.S., Mrazek, K., Zhou, L., Owens, J.R., Radzicki, D., Preuss, F., Schadt, E.E., Shimomura, K., Vitaterna, M.H., Zhang, C., Koblan, K.S., Renger, J.J. & Turek, F.W. (2009) Uncovering the genetic landscape for multiple sleep-wake traits. PLoS ONE, 4, e5161. Arends, D., Prins, P., Jansen, R.C. & Broman, K.W. (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics, 26, 2990-2992. Crawley, J.N., Belknap, J.K., Collins, A., Crabbe, J.C., Frankel, W., Henderson, N., Hitzemann, R.J., Maxson, S.C., Miner, L.L., Silva, A.J., Wehner, J.M., Wynshaw-Boris, A. & Paylor, R. (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology, 132, 107-124. Zecharia, A.Y., Yu, X., Gotz, T., Ye, Z., Carr, D.R., Wulff, P., Bettler, B., Vyssotski, A.L., Brickley, S.G., Franks, N.P. & Wisden, W. (2012) GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J. Neurosci., 32, 13062-13075. Kas, M.J., de Mooij-van Malsen, J.G., de Krom, M., van Gassen, K.L., van Lith, H.A., Olivier, B., Oppelaar, H., Hendriks, J., de Wit, M., Groot Koerkamp, M.J., Holstege, F.C., van Oost, B.A. & de Graan, P.N. (2009) High-resolution genetic mapping of mammalian motor activity levels in mice. Genes Brain Behav., 8, 13-22. Szabadi, E. (2013) Functional neuroanatomy of the central noradrenergic system. J. Psychopharmacol., 27, 659-693. Tafti, M., Petit, B., Chollet, D., Neidhart, E., de Bilbao, F., Kiss, J.Z., Wood, P.A. & Franken, P. (2003) Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Nat. Genet., 34, 320-325. Wang, R., Macmillan, L.B., Fremeau, R.T., Magnuson, M.A., Lindner, J. & Limbird, L.E. (1996) Expression of alpha(2)-adrenergic receptor subtypes in the mouse brain: evaluation of spatial and temporal information imparted by 3 kb of 5' regulatory sequence for the alpha(2A)AR-receptor gene in transgenic animals. Neuroscience, 74, 199-218. Kuo, Y.M., Zhou, B., Cosco, D. & Gitschier, J. (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. USA, 98, 6836-6841. Avsaroglu, H., Bull, S., Maas-Bakker, R.F., Scherpenisse, P., Van Lith, H.A., Bergwerff, A.A., Hellebrekers, L.J., Van Zutphen, L.F. & Fink-Gremmels, J. (2008) Differences in hepatic cytochrome P450 activity correlate with the strain-specific biotransformation of medetomidine in AX/JU and IIIVO/JU inbred rabbits. J. Vet. Pharmacol. Ther., 31, 368-377. Mason, K.P., O'Mahony, E., Zurakowski, D. & Libenson, M.H. (2009) Effects of dexmedetomidine sedation on the EEG in children. Paediatr. Anaesth., 19, 1175-1183. Drew, G.M., Gower, A.J. & Marriott, A.S. (1979) Alpha 2-adrenoceptors mediate clonidine-induced sedation in the rat. Brit. J. Pharmacol., 67, 133-141. Venn, R.M. & Grounds, R.M. (2001) Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: patient and clinician perceptions. Brit. J. Anaesth., 87, 684-690. Gilsbach, R., Roser, C., Beetz, N., Brede, M., Hadamek, K., Haubold, M., Leemhuis, J., Philipp, M., Schneider, J., Urbanski, M., Szabo, B., Weinshenker, D. & Hein, L. (2009) Genetic dissection of alpha2-adrenoceptor functions in adrenergic versus nonadrenergic cells. Mol. Pharmacol., 75, 1160-1170. Kitchigina, V.F., Kutyreva, E.V. & Brazhnik, E.S. (2003) Modulation of theta rhythmicity in the medial septal neurons and the hippocampal electroencephalogram in the awake rabbit via actions at noradrenergic alpha2-receptors. Neuroscience, 120, 509-521. Franks, N.P. (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci., 9, 370-386. Maze, M. & Regan, J.W. (1991) Role of signal transduction in anesthetic action. Alpha 2 adrenergic agonists. Ann. NY Acad. Sci., 625, 409-422. Nicholas, A.P., Pieribone, V. & Hokfelt, T. (1993) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J. Comp. Neurol., 328, 575-594. Pang, D.S., Robledo, C.J., Carr, D.R., Gent, T.C., Vyssotski, A.L., Caley, A., Zecharia, A.Y., Wisden, W., Brickley, S.G. & Franks, N.P. (2009) An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc. Natl. Acad. Sci. USA, 106, 17546-17551. Saper, C.B., Fuller, P.M., Pedersen, N.P., Lu, J. & Scammell, T.E. (2010) Sleep state switching. Neuron, 68, 1023-1042. Sainsbury, R.S. & Partlo, L.A. (1991) The effects of alpha 2 agonists and antagonists on hippocampal theta activity in the freely moving rat. Brain Res. Bull., 26, 37-42. Kamibayashi, T. & Maze, M. (2000) Clinical uses of alpha2 -adrenergic agonists. Anesthesiology, 93, 1345-1349. Duhamel, M.C., Troncy, E. & Beaudry, F. (2010) Metabolic stability and determination of cytochrome P450 isoenzymes' contribution to the metabolism of medetomidine in dog liver microsomes. Biomed. Chromatogr., 24, 868-877. Prows, D.R., Hafertepen, A.P., Winterberg, A.V., Gibbons, W.J. Jr., Liu, C. & Nick, T.G. (2007) Genetic analysis of hyperoxic acute lung injury survival in reciprocal intercross mice. Physiol. Genomics, 30, 271-281. Wisden, W. & Morris, B. (1994). In Situ Hybridization Protocols for the Brain. Academic Press, London. Hessel, E.V., van Lith, H.A., Wolterink-Donselaar, I.G., de Wit, M., Hendrickx, D.A., Kas, M.J. & de Graan, P.N. (2012) Mapping an X-linked locus that influences heat-induced febrile seizures in mice. Epilepsia, 53, 1399-1410. Ralph, M.R. & Menaker, M. (1988) A mutation of the circadian system in golden hamsters. Science, 241, 1225-1227. Philipp, M. & Hein, L. (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol. Therapeut., 101, 65-74. Logue, S.F., Owen, E.H., Rasmussen, D.L. & Wehner, J.M. (1997) Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analyses. Neuroscience, 80, 1075-1086. Wrighton, S.A. & Stevens, J.C. (1992) The human hepatic cytochromes P450 involved in drug metabolism. Crit. Rev. Toxicol., 22, 1-21. Korpi, E.R., Koikkalainen, P., Vekovischeva, O.Y., Makela, R., Kleinz, R., Uusi-Oukari, M. & Wisden, W. (1999) Cerebellar granule-cell-specific GABAA receptors attenuate benzodiazepine-induced ataxia: evidence from alpha 6-subunit-deficient mice. Eur. J. Neurosci., 11, 233-240. Franken, P., Malafosse, A. & Tafti, M. (1998) Genetic variation in EEG activity during sleep in inbred mice. Am. J. Physiol., 275, R1127-R1137. Wrzosek, M., Nicpon, J., Bergamasco, L., Sammartano, F., Cizinauskas, S. & 1997; 80 1993; 328 2013; 27 2000; 857 2002; 99 2008; 9 1996; 74 2000; 93 2012; 16 2008; 31 2007; 30 1998; 275 2012; 53 2003; 98 2001; 87 2010; 26 1979; 67 1997; 94 2010; 24 2010; 68 1999; 11 1972; 183 2009; 19 2007; 25 2003; 120 2001; 98 1991; 625 2004; 101 2006; 317 2012 2009; 180 2005; 310 1997; 132 2009 1994 1999; 63 1988; 241 2007; 10 2001; 68 1972; 238 2012; 32 2003; 34 2013; 37 2009; 75 1991; 26 2009; 8 2013; 493 2008; 42 2009; 4 1992; 22 2009; 106 16397088 - J Pharmacol Exp Ther. 2006 May;317(2):615-26 18638298 - J Vet Pharmacol Ther. 2008 Aug;31(4):368-77 9756543 - Am J Physiol. 1998 Oct;275(4 Pt 2):R1127-37 17408425 - Eur J Neurosci. 2007 Mar;25(6):1893-9 19805135 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17546-51 4636393 - J Pharmacol Exp Ther. 1972 Dec;183(3):577-607 22780306 - Epilepsia. 2012 Aug;53(8):1399-410 23252935 - Eur J Neurosci. 2013 Mar;37(6):891-900 19360106 - PLoS One. 2009;4(4):e5161 11046225 - Anesthesiology. 2000 Nov;93(5):1345-9 1616599 - Crit Rev Toxicol. 1992;22(1):1-21 18983259 - Annu Rev Genet. 2008;42:361-88 20020418 - Biomed Chromatogr. 2010 Aug;24(8):868-77 1711813 - Ann N Y Acad Sci. 1991;625:409-22 23325221 - Nature. 2013 Jan 17;493(7432):402-5 4558354 - Nature. 1972 Jul 28;238(5361):226-7 23761387 - J Psychopharmacol. 2013 Aug;27(8):659-93 22993424 - J Neurosci. 2012 Sep 19;32(38):13062-75 17572671 - Nat Neurosci. 2007 Jul;10(7):923-9 10700548 - Brain Res. 2000 Feb 28;857(1-2):8-19 12796782 - Nat Genet. 2003 Jul;34(3):320-5 9987027 - Eur J Neurosci. 1999 Jan;11(1):233-40 16210540 - Science. 2005 Oct 7;310(5745):111-3 20017865 - Paediatr Anaesth. 2009 Dec;19(12):1175-83 22296742 - Sleep Med Rev. 2012 Apr;16(2):187-97 11391004 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6836-41 18721260 - Genes Brain Behav. 2009 Feb;8(1):13-22 18425091 - Nat Rev Neurosci. 2008 May;9(5):370-86 18314356 - Vet J. 2009 May;180(2):221-30 17488888 - Physiol Genomics. 2007 Aug 20;30(3):271-81 11179021 - Am J Hum Genet. 2001 Mar;68(3):753-8 19251826 - Mol Pharmacol. 2009 May;75(5):1160-70 21172606 - Neuron. 2010 Dec 22;68(6):1023-42 8843087 - Neuroscience. 1996 Sep;74(1):199-218 19559612 - Curr Biol. 2009 Jul 28;19(14):1159-66 3413487 - Science. 1988 Sep 2;241(4870):1225-7 20966004 - Bioinformatics. 2010 Dec 1;26(23):2990-2 12552203 - Anesthesiology. 2003 Feb;98(2):428-36 1673083 - Brain Res Bull. 1991 Jan;26(1):37-42 10340519 - Pharmacol Biochem Behav. 1999 May;63(1):21-6 12890520 - Neuroscience. 2003;120(2):509-21 12205290 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12471-6 9275232 - Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9950-5 40643 - Br J Pharmacol. 1979 Sep;67(1):133-41 8381444 - J Comp Neurol. 1993 Feb 22;328(4):575-94 9266608 - Psychopharmacology (Berl). 1997 Jul;132(2):107-24 11878517 - Br J Anaesth. 2001 Nov;87(5):684-90 14729393 - Pharmacol Ther. 2004 Jan;101(1):65-74 9284061 - Neuroscience. 1997 Oct;80(4):1075-86 |
References_xml | – year: 2009 – volume: 11 start-page: 233 year: 1999 end-page: 240 article-title: Cerebellar granule‐cell‐specific GABAA receptors attenuate benzodiazepine‐induced ataxia: evidence from alpha 6‐subunit‐deficient mice publication-title: Eur. J. Neurosci. – volume: 625 start-page: 409 year: 1991 end-page: 422 article-title: Role of signal transduction in anesthetic action. Alpha 2 adrenergic agonists publication-title: Ann. NY Acad. Sci. – volume: 87 start-page: 684 year: 2001 end-page: 690 article-title: Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: patient and clinician perceptions publication-title: Brit. J. Anaesth. – volume: 53 start-page: 1399 year: 2012 end-page: 1410 article-title: Mapping an X‐linked locus that influences heat‐induced febrile seizures in mice publication-title: Epilepsia – volume: 98 start-page: 428 year: 2003 end-page: 436 article-title: The alpha2‐adrenoceptor agonist dexmedetomidine converges on an endogenous sleep‐promoting pathway to exert its sedative effects publication-title: Anesthesiology – volume: 27 start-page: 659 year: 2013 end-page: 693 article-title: Functional neuroanatomy of the central noradrenergic system publication-title: J. Psychopharmacol. – volume: 19 start-page: 1175 year: 2009 end-page: 1183 article-title: Effects of dexmedetomidine sedation on the EEG in children publication-title: Paediatr. Anaesth. – year: 1994 – volume: 94 start-page: 9950 year: 1997 end-page: 9955 article-title: Substitution of a mutant alpha2a‐adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic‐sparing responses in vivo publication-title: Proc. Natl. Acad. Sci. USA – volume: 132 start-page: 107 year: 1997 end-page: 124 article-title: Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies publication-title: Psychopharmacology – volume: 241 start-page: 1225 year: 1988 end-page: 1227 article-title: A mutation of the circadian system in golden hamsters publication-title: Science – volume: 26 start-page: 2990 year: 2010 end-page: 2992 article-title: R/qtl: high‐throughput multiple QTL mapping publication-title: Bioinformatics – volume: 16 start-page: 187 year: 2012 end-page: 197 article-title: Noradrenergic modulation of wakefulness/arousal publication-title: Sleep Med. Rev. – volume: 31 start-page: 368 year: 2008 end-page: 377 article-title: Differences in hepatic cytochrome P450 activity correlate with the strain‐specific biotransformation of medetomidine in AX/JU and IIIVO/JU inbred rabbits publication-title: J. Vet. Pharmacol. Ther. – volume: 80 start-page: 1075 year: 1997 end-page: 1086 article-title: Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analyses publication-title: Neuroscience – volume: 37 start-page: 891 year: 2013 end-page: 900 article-title: Wake‐promoting actions of noradrenergic alpha1 ‐ and beta‐receptors within the lateral hypothalamic area publication-title: Eur. J. Neurosci. – volume: 183 start-page: 577 year: 1972 end-page: 607 article-title: On biological assays involving quantal responses publication-title: J. Pharmacol. Exp. Ther. – volume: 22 start-page: 1 year: 1992 end-page: 21 article-title: The human hepatic cytochromes P450 involved in drug metabolism publication-title: Crit. Rev. Toxicol. – volume: 106 start-page: 17546 year: 2009 end-page: 17551 article-title: An unexpected role for TASK‐3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action publication-title: Proc. Natl. Acad. Sci. USA – volume: 93 start-page: 1345 year: 2000 end-page: 1349 article-title: Clinical uses of alpha2 ‐adrenergic agonists publication-title: Anesthesiology – volume: 493 start-page: 402 year: 2013 end-page: 405 article-title: Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice publication-title: Nature – volume: 857 start-page: 8 year: 2000 end-page: 19 article-title: Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations publication-title: Brain Res. – volume: 30 start-page: 271 year: 2007 end-page: 281 article-title: Genetic analysis of hyperoxic acute lung injury survival in reciprocal intercross mice publication-title: Physiol. Genomics – volume: 328 start-page: 575 year: 1993 end-page: 594 article-title: Distributions of mRNAs for alpha‐2 adrenergic receptor subtypes in rat brain: an in situ hybridization study publication-title: J. Comp. Neurol. – volume: 98 start-page: 6836 year: 2001 end-page: 6841 article-title: The copper transporter CTR1 provides an essential function in mammalian embryonic development publication-title: Proc. Natl. Acad. Sci. USA – volume: 317 start-page: 615 year: 2006 end-page: 626 article-title: The in vivo contributions of TASK‐1‐containing channels to the actions of inhalation anesthetics, the alpha(2) adrenergic sedative dexmedetomidine, and cannabinoid agonists publication-title: J. Pharmacol. Exp. Ther. – volume: 24 start-page: 868 year: 2010 end-page: 877 article-title: Metabolic stability and determination of cytochrome P450 isoenzymes’ contribution to the metabolism of medetomidine in dog liver microsomes publication-title: Biomed. Chromatogr. – volume: 4 start-page: e5161 year: 2009 article-title: Uncovering the genetic landscape for multiple sleep‐wake traits publication-title: PLoS ONE – volume: 180 start-page: 221 year: 2009 end-page: 230 article-title: Visual and quantitative electroencephalographic analysis of healthy young and adult cats under medetomidine sedation publication-title: Vet. J. – volume: 275 start-page: R1127 year: 1998 end-page: R1137 article-title: Genetic variation in EEG activity during sleep in inbred mice publication-title: Am. J. Physiol. – volume: 75 start-page: 1160 year: 2009 end-page: 1170 article-title: Genetic dissection of alpha2‐adrenoceptor functions in adrenergic versus nonadrenergic cells publication-title: Mol. Pharmacol. – volume: 74 start-page: 199 year: 1996 end-page: 218 article-title: Expression of alpha(2)‐adrenergic receptor subtypes in the mouse brain: evaluation of spatial and temporal information imparted by 3 kb of 5’ regulatory sequence for the alpha(2A)AR‐receptor gene in transgenic animals publication-title: Neuroscience – volume: 101 start-page: 65 year: 2004 end-page: 74 article-title: Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes publication-title: Pharmacol. Therapeut. – volume: 68 start-page: 753 year: 2001 end-page: 758 article-title: Familial dysautonomia is caused by mutations of the IKAP gene publication-title: Am. J. Hum. Genet. – volume: 34 start-page: 320 year: 2003 end-page: 325 article-title: Deficiency in short‐chain fatty acid beta‐oxidation affects theta oscillations during sleep publication-title: Nat. Genet. – volume: 25 start-page: 1893 year: 2007 end-page: 1899 article-title: The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta‐subunit‐containing receptors publication-title: Eur. J. Neurosci. – volume: 68 start-page: 1023 year: 2010 end-page: 1042 article-title: Sleep state switching publication-title: Neuron – volume: 238 start-page: 226 year: 1972 end-page: 227 article-title: Genetic studies of sleep in mice publication-title: Nature – volume: 67 start-page: 133 year: 1979 end-page: 141 article-title: Alpha 2‐adrenoceptors mediate clonidine‐induced sedation in the rat publication-title: Brit. J. Pharmacol. – volume: 310 start-page: 111 year: 2005 end-page: 113 article-title: Retinoic acid signaling affects cortical synchrony during sleep publication-title: Science – year: 2012 – volume: 26 start-page: 37 year: 1991 end-page: 42 article-title: The effects of alpha 2 agonists and antagonists on hippocampal theta activity in the freely moving rat publication-title: Brain Res. Bull. – volume: 63 start-page: 21 year: 1999 end-page: 26 article-title: Pharmacologic and behavioral responses of inbred C57BL/6J and strain 129/SvJ mouse lines publication-title: Pharmacol. Biochem. Be. – volume: 9 start-page: 370 year: 2008 end-page: 386 article-title: General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal publication-title: Nat. Rev. Neurosci. – volume: 19 start-page: 1159 year: 2009 end-page: 1166 article-title: EEG responses to visual landmarks in flying pigeons publication-title: Curr. Biol. – volume: 99 start-page: 12471 year: 2002 end-page: 12476 article-title: Heterozygous alpha 2A‐adrenergic receptor mice unveil unique therapeutic benefits of partial agonists publication-title: Proc. Natl. Acad. Sci. USA – volume: 42 start-page: 361 year: 2008 end-page: 388 article-title: Genetics of sleep publication-title: Annu. Rev. Genet. – volume: 8 start-page: 13 year: 2009 end-page: 22 article-title: High‐resolution genetic mapping of mammalian motor activity levels in mice publication-title: Genes Brain Behav. – volume: 10 start-page: 923 year: 2007 end-page: 929 article-title: From synapse to behavior: rapid modulation of defined neuronal types with engineered GABA receptors publication-title: Nat. Neurosci. – volume: 32 start-page: 13062 year: 2012 end-page: 13075 article-title: GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep‐wake switch or propofol‐induced loss of consciousness publication-title: J. Neurosci. – volume: 120 start-page: 509 year: 2003 end-page: 521 article-title: Modulation of theta rhythmicity in the medial septal neurons and the hippocampal electroencephalogram in the awake rabbit via actions at noradrenergic alpha2‐receptors publication-title: Neuroscience |
SSID | ssj0008645 |
Score | 2.2903812 |
Snippet | How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non‐specific type of phenomenon. However, the... How external stimuli prevent the onset of sleep has been little studied. This is usually considered to be a non-specific type of phenomenon. However, the... |
SourceID | pubmedcentral proquest pubmed pascalfrancis wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2311 |
SubjectTerms | Adrenergic alpha-Agonists - pharmacology alpha2a adrenergic receptor Animals Behavioral Neuroscience Biological and medical sciences Brain - drug effects Brain - physiology Chromosomes, Mammalian Dexmedetomidine - pharmacology Electroencephalography Fundamental and applied biological sciences. Psychology Genes, Dominant Genome-Wide Association Study Hypnotics and Sedatives - pharmacology Mice, 129 Strain Mice, Inbred C57BL Pharmacogenetics Physical Stimulation Receptors, Adrenergic, alpha-2 - genetics Receptors, Adrenergic, alpha-2 - metabolism Reflex, Righting - drug effects Reflex, Righting - genetics Reflex, Righting - physiology Rotarod Performance Test sedation sleep Sleep - drug effects Sleep - genetics Sleep - physiology Sleep. Vigilance Species Specificity Vertebrates: nervous system and sense organs wakefulness Wakefulness - drug effects Wakefulness - genetics Wakefulness - physiology |
Title | Staying awake - a genetic region that hinders α2 adrenergic receptor agonist-induced sleep |
URI | https://api.istex.fr/ark:/67375/WNG-QXF7PN0B-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.12570 https://www.ncbi.nlm.nih.gov/pubmed/24674448 https://search.proquest.com/docview/1547544665 https://pubmed.ncbi.nlm.nih.gov/PMC4215598 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BL3DhpwUaKNUioYqLkX_Xa3EqJaHiEBUVRG6r2ey6CQW7ihMBtz4CUp-EF-Eh-iTMrBPTCA5I3Cx55uDdmdkZ78z3ATyNS2mjxPClu5JBGo_LwMTKBmmuMpPToZJInkY-PM6HI_WqzzA5L1azMC0-RPfDjT3Dx2t2cDTNFSd3H6vnEXOwUfylKsGPbyRHXRRW0hMUM5xaoCI5WqIKcRdPp0kJKa_lV26IxIbWpGzJLP6Wbf7ZNHk1mfWn0eD2f33HHbi1TELFfms1d-GaqzZha7-iAvzzN7EnfFuo_9--CTcOVpRwW6ApNeWxKIFf8NSJy_MLgYIskAchBVM81JWYT3AuJlM_MyN-_ogF8qy4m514EW6iqWcCT2pG7L08_06CZFxWNJ-cO7sH7wf9dweHwZKhIZgyo3oQmdSGRhYuGhcqTIzJMHToEKWLleIrWZQxN6a4jAzCyiSVNkxyg7ktbEkB5T5sVHXltkFEJVO0Y1hYqtAYZD9RZVFiMU4LpSJMe7Dn90qftSgcGmen3JSWZ_rD8LV-OxrkR8PwpT7uwe7aZnYKsZIU-aOsB09Wu6tp_fiCBCtXLxpN6STjAUpJMg_a3f6tzbQsVMv2IF-zg06AcbrX31TTicfrTmO--yXNZ94OOo1V_UUWoL0F6P6boX94-O-ij-Am5XBp20G8Axvz2cI9huuNXex6h_gFtHEQXw |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RcigXflooW6AYCVVcgvLjOI7USym7LFCiohaxN8tZO92lNKn2R4VbHwGpT9IX4SH6JMw4u6ErOCBxi5SZQ-xvnLE9830Az8NCmCDK6dJdCo-H_cLLQ2k8nsg4T_CnEgnqRu4eJFlPvm4TTc72vBem5odoDtwoMtx6TQFOB9LXotx-KV8GJMK2BDe5QCBSA0e036zDUjiJYiJU82QgejNeIarjaVwxJaXR_EYlkXqMo1LUchZ_yzf_LJu8ns66_1Hnzv99yV24PctD2U4NnHtww5arsLZT4h785DvbYq4y1B25r8LK7lwVbg0UZqfUGcX0mT627Or8gmmGIKReSEYqD1XJJgM9YYOha5thPy9Dpqld3I6OnAnV0VQjpo8qIu29Ov-Bhogvw8ZfrT29D5867cPdrjcTafCGJKruBTk3fi5SG_RT6Ud5Hmvfaqu1sKGUdCurRUi1KTZGTBgRcWH8KMl1YlJT4JryAJbLqrQPgQUFqbRrPzW4SSOe_UgWaaHTPk-lDDRvwZabLHVaE3EoPTqmurQkVp-zN-pjr5PsZ_4rddCCzYXZbBxCKXDxD-IWPJtPr8LxozsSXdpqOlaYURIloBBos15P929vUmbB7WwLkgUgNAZE1b34phwOHGU3D-n6Fz1fOCA0HvMtGCJAOQSo9rvMPWz8u-lTWOkefthTe2-z94_gFqZ0vC4ofgzLk9HUPoGlsZluuuj4BccPFIc |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgEXHi3Q5VGMhCouqfJwHEecSrvb8lC0qCD2Zjlrp7u0JKt9CLj1JyDxS_gj_RH9JZ1xdtOu4IDELVJmDrFnxjPxzPcBvAgLYYIop0t3KTwe9gsvD6XxeCLjPMFDJRI0jXxwmGQ9udcmmJxXi1mYGh-i-eFGnuHiNTn4yBRXnNx-KbcD4mBbgesc03ACzo-ibhOGpXAMxYSn5slA9OawQtTG06hiRkqL-Z06IvUEF6Wo2Sz-lm7-2TV5NZt1x1Hnzn99yF24Pc9C2U5tNvfgmi3XYH2nxAr86w-2xVxfqPvhvgY3dxeccOugMDeluSimv-ljy85PfzHN0ARpEpIRx0NVsulAT9lg6IZm2NnvkGkaFrfjIydCXTTVmOmjiiB7z09_oiBal2GTE2tH9-FTp_1x98CbUzR4Q6JU94KcGz8XqQ36qfSjPI-1b7XVWthQSrqT1SKkzhQbo0UYEXFh_CjJdWJSU2BEeQCrZVXaDWBBQRzt2k8NlmiEsh_JIi102ueplIHmLdhye6VGNQyH0uNj6kpLYvU521cfep2km_mv1WELNpc2s1EIpcDQH8QteL7YXYXrRzckurTVbKIwnyRAQCFQ5mG925faxMuCxWwLkiU7aAQIqHv5TTkcOMBuHtLlL2q-dHbQaCwKMLQA5SxAtd9m7uHRv4s-gxvdvY56_yZ79xhuYT7H627iJ7A6Hc_sU1iZmNmm840Lab4TLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staying+awake+%E2%80%93+a+genetic+region+that+hinders+%CE%B12+adrenergic+receptor+agonist%E2%80%90induced+sleep&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Gelegen%2C+Cigdem&rft.au=Gent%2C+Thomas+C.&rft.au=Ferretti%2C+Valentina&rft.au=Zhang%2C+Zhe&rft.date=2014-07-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=40&rft.issue=1&rft.spage=2311&rft.epage=2319&rft_id=info:doi/10.1111%2Fejn.12570&rft.externalDBID=10.1111%252Fejn.12570&rft.externalDocID=EJN12570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |