An Efficient Deep Unrolling Super-Resolution Network for Lidar Automotive Scenes
Considering the high cost of high-resolution Lidar sensors, in this work, a novel Lidar super-resolution method is proposed to improve the performance on numerous autonomous vehicle perception tasks, including that of a Lidar odometer. Specifically, we propose a regularized optimization problem empl...
Saved in:
Published in: | 2023 IEEE International Conference on Image Processing (ICIP) pp. 1840 - 1844 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
08-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Considering the high cost of high-resolution Lidar sensors, in this work, a novel Lidar super-resolution method is proposed to improve the performance on numerous autonomous vehicle perception tasks, including that of a Lidar odometer. Specifically, we propose a regularized optimization problem employing a learnable regularizer (neural network) to capture the properties of the data. To efficiently solve this problem, a deep unrolling methodology is proposed, thus forming an interpretable and well-justified deep architecture. Extensive experiments on a real-world lidar odometry application highlight that the proposed model exhibits both superior performance as well as a significantly reduced number of trainable parameters i.e., 99.75% less parameters, as compared to other deep learning methods. The source code used for this work can be found at our repository: repository. |
---|---|
AbstractList | Considering the high cost of high-resolution Lidar sensors, in this work, a novel Lidar super-resolution method is proposed to improve the performance on numerous autonomous vehicle perception tasks, including that of a Lidar odometer. Specifically, we propose a regularized optimization problem employing a learnable regularizer (neural network) to capture the properties of the data. To efficiently solve this problem, a deep unrolling methodology is proposed, thus forming an interpretable and well-justified deep architecture. Extensive experiments on a real-world lidar odometry application highlight that the proposed model exhibits both superior performance as well as a significantly reduced number of trainable parameters i.e., 99.75% less parameters, as compared to other deep learning methods. The source code used for this work can be found at our repository: repository. |
Author | Lalos, Aris S. Ampeliotis, Dimitris Gkillas, Alexandros |
Author_xml | – sequence: 1 givenname: Alexandros surname: Gkillas fullname: Gkillas, Alexandros organization: Athena Research Center,Industrial Systems Institute,Greece – sequence: 2 givenname: Aris S. surname: Lalos fullname: Lalos, Aris S. organization: Athena Research Center,Industrial Systems Institute,Greece – sequence: 3 givenname: Dimitris surname: Ampeliotis fullname: Ampeliotis, Dimitris organization: Athena Research Center,Industrial Systems Institute,Greece |
BookMark | eNo1j8FKxDAURSPowhn9A8H8QGtf0rTJstRRC0UHx1kPafoiwU5S0lbx7x1QV3dx4HDuipz74JGQW8hSgEzdNXWzzRUXKmUZ4ylkjDEpijOygpJJUJKL4pJsK0831jrj0M_0HnGkex_DMDj_TnfLiDF5xSkMy-yCp884f4X4QW2ItHW9jrRa5nAMs_tEujPocboiF1YPE17_7ZrsHzZv9VPSvjw2ddUmjgk-J3nen2J4qVkpFJeAkBUctOwKoxlqaSQaCwAmt0bwvLdGFbIT_YkI1VnB1-Tm1-sQ8TBGd9Tx-_D_kv8ADPJNUA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP49359.2023.10222856 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728198356 9781728198354 |
EndPage | 1844 |
ExternalDocumentID | 10222856 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i253t-44d85637a2759381e10631a8b6ca2ea8c8ecf111c4fc534dfc968b5da8c59bf53 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 10 09:27:48 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i253t-44d85637a2759381e10631a8b6ca2ea8c8ecf111c4fc534dfc968b5da8c59bf53 |
OpenAccessLink | https://doi.org/10.1109/icip49359.2023.10222856 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10222856 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct.-8 |
PublicationDateYYYYMMDD | 2023-10-08 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.29969 |
Snippet | Considering the high cost of high-resolution Lidar sensors, in this work, a novel Lidar super-resolution method is proposed to improve the performance on... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1840 |
SubjectTerms | Deep learning deep unrolling Laser radar lidar lidar odometry Neural networks Odometers Sensors SLAM Source coding super-resolution Superresolution |
Title | An Efficient Deep Unrolling Super-Resolution Network for Lidar Automotive Scenes |
URI | https://ieeexplore.ieee.org/document/10222856 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawMhEJamp57a0pS-8dCreayrjseQBwmUEEgDvQUfs5DLJmyz_f1VN0npoYfexAfKqDM-vvmGkFftHBTcGCYKsCzPBWegvWQybHLgYLVNJEnTpZp_wGgcaXLYyRcGERP4DDsxmf7y_dbV8amsm24nIGSLtJSGxlnrgNnq93R3Npwt8uhp2okxwTvH2r_ipiSzMbn8Z4dXpP3jgEcXJ9NyTc6wvCGLQUnHifEhNKIjxB1dlVVDqk2X9Q4rFh_jm6VE5w2-m4ZDKX3beFPRQb1P0LsvpEsXVVybrCbj9-GUHQIisE0m-D6I0ofBcGUyJXQwtRjuc7xvwEpnMjTgAF0RlJfLCyd47gunJVjhQ4nQthD8lpyX2xLvCJU8KDZQ4HOw4UQljRboVE9lhfIyd3hP2lEc613DebE-SuLhj_xHchGF3qDjnsj5vqrxmbQ-ff2SpukbLdqVTw |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG4ED3pSI8bdHryWZbofCUsgIiEBEm-k075JuAxkZPz9th3AePDgremSNq_te12-9z2EXrW1KqPGEJ6plDDGKVHaCSL8JldUpTqNJEmjuZx-qP4g0OSQoy8MAETwGTRDMv7lu40tw1NZK95OFBc1dMqZFLJy19qjtjpt3Rr3xjMWfE2bISp481D_V-SUaDiGF__s8hI1flzw8OxoXK7QCeTXaNbN8SByPvhGuA-wxcu8qGi18bzcQkHCc3y1mPC0QnhjfyzFk7UzBe6Wuwi--wI8t0HJNdByOFj0RmQfEoGsE053XpjOD4ZKk0iuvbEFf6OjHaNSYU0CRlkFNvPqy7LMcspcZrVQKXe-hOs04_QG1fNNDrcIC-pVm5LKMZX6M5UwmoOVbZlk0glm4Q41gjhW24r1YnWQxP0f-S_obLR4n6wm4-nbAzoPE1Bh5R5RfVeU8IRqn658jlP2DTq9mKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=An+Efficient+Deep+Unrolling+Super-Resolution+Network+for+Lidar+Automotive+Scenes&rft.au=Gkillas%2C+Alexandros&rft.au=Lalos%2C+Aris+S.&rft.au=Ampeliotis%2C+Dimitris&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=1840&rft.epage=1844&rft_id=info:doi/10.1109%2FICIP49359.2023.10222856&rft.externalDocID=10222856 |