A Semi-Supervised Multi-view Genetic Algorithm
Semi-supervised learning combines labeled and unlabeled examples in order to find better future predictions. Usually, in this area of research we have massive amounts of unlabeled instances and few labeled ones. In this paper each instance has attributes from multiple sources of information (views)...
Saved in:
Published in: | 2014 2nd International Conference on Artificial Intelligence, Modelling and Simulation pp. 87 - 91 |
---|---|
Main Authors: | , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-11-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Semi-supervised learning combines labeled and unlabeled examples in order to find better future predictions. Usually, in this area of research we have massive amounts of unlabeled instances and few labeled ones. In this paper each instance has attributes from multiple sources of information (views) and a genetic algorithm is applied for regression function learning. Based on the few labeled examples and the agreement among the views on the unlabeled examples the error of the algorithm is optimized, striving after minimal regularized risk. The performance of the algorithm (based on RMSE: root-mean-square error), is compared to its supervised equivalent and shows very good results. |
---|---|
AbstractList | Semi-supervised learning combines labeled and unlabeled examples in order to find better future predictions. Usually, in this area of research we have massive amounts of unlabeled instances and few labeled ones. In this paper each instance has attributes from multiple sources of information (views) and a genetic algorithm is applied for regression function learning. Based on the few labeled examples and the agreement among the views on the unlabeled examples the error of the algorithm is optimized, striving after minimal regularized risk. The performance of the algorithm (based on RMSE: root-mean-square error), is compared to its supervised equivalent and shows very good results. |
Author | Koychev, Ivan Lazarova, Gergana |
Author_xml | – sequence: 1 givenname: Gergana surname: Lazarova fullname: Lazarova, Gergana email: gerganal@fmi.uni-sofia.bg organization: Software Technol., Sofia Univ. "St. Kliment Ohridski", Sofia, Bulgaria – sequence: 2 givenname: Ivan surname: Koychev fullname: Koychev, Ivan email: koychev@fmi.uni-sofia.bg organization: Software Technol., Sofia Univ. "St. Kliment Ohridski", Sofia, Bulgaria |
BookMark | eNotzLFOwzAQAFAjwUALGxtLfsDhbJ_jeIwqKJVaMQTmyrHPcFKSVmlaxN8zwPS2txDX42EkIR4UlEqBf2o2u7bUoLA07kosFDrvXQVQ34qyKVoaWLbnI00XPlEqdud-Znlh-i7WNNLMsWj6z8PE89dwJ25y6E90_-9SfLw8v69e5fZtvVk1W8ka7SyVN50HTHXUAQAChgiQrA-WTHIZImSbTawghYRV3Wky2WgNnrzVXYdmKR7_Xiai_XHiIUw_e6dAI4L5BXjzPdU |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/AIMS.2014.37 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISBN | 1479976008 9781479976003 9781479975990 1479975990 |
EndPage | 91 |
ExternalDocumentID | 7102440 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i245t-193b904d8c2a000a4ac00d59a5e3d7f0c0f5f3c60dad468b2e3f32209e952bb43 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:59 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i245t-193b904d8c2a000a4ac00d59a5e3d7f0c0f5f3c60dad468b2e3f32209e952bb43 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7102440 |
PublicationCentury | 2000 |
PublicationDate | 2014-Nov. |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2014 2nd International Conference on Artificial Intelligence, Modelling and Simulation |
PublicationTitleAbbrev | AIMSim |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.638138 |
Snippet | Semi-supervised learning combines labeled and unlabeled examples in order to find better future predictions. Usually, in this area of research we have massive... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 87 |
SubjectTerms | Biological cells Genetic algorithms multi-view learning Optimization semi-supervised learning Semisupervised learning Sociology Statistics Training |
Title | A Semi-Supervised Multi-view Genetic Algorithm |
URI | https://ieeexplore.ieee.org/document/7102440 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sTz35aMU3e_BotttNsk2ORVvqQRFWwVtJNhMt2Adt9_-b2S0rghdvIQTCTBjmkfm-AbhVwQXZgdUMrRBMKPrfVSiZ1NzwQeGDFRLeeZoPn9_Vw5hocu4aLAwiVs1nGNOy-st3q6KkUlmfvKEQIUFvDbWqsVpNL7vujx6fcurVEjH_PSulchWTw_9dcgS9H8xd9NJ4k2M4wOUJdCgWrKmUuxCPohwXc5aXazLwLbqogs8yqu5HxB8dzkWjr49VSPg_Fz14m4xf76dsP-6AzVMhdyyEUlYnwqkiNUFFRpgiKEpqI5G7oU-KxEvPiyxxxolM2RS5D-aYaNQytVbwU2gvV0s8gygIZUIoMDA-ZG_OaJtK6zy3aDIpbJKeQ5cEn61rRovZXuaLv7cvoUNqrRF4V9DebUq8htbWlTfVG3wDcXyJKQ |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HuzJRyu-3YNH0243ye7mWLRli20RtoK3kmwmWrDdYrv_32S3rAhevIUQCDNhmEfm-wbgPrYuSPWUIKgYIyx2_7sxcsIFlbSXGWuFDu-cpNH0LX4aOJqchxoLg4hl8xl23LL8y9d5VrhSWdd5Q8Zsgn7AWRRGFVqr7mYX3f5okrpuLdahv6ellM5iePS_a46h_YO6815qf3ICe7g6haaLBisy5RZ0-l6KywVJi7Uz8Q1qrwTQElff9xyDtD3n9T_fc5vyfyzb8DoczB4Tsht4QBYB41tigyklfKbjLJBWSZLJzKqKC8mR6sj4mW-4oVnoa6lZGKsAqbEG6QsUPFCK0TNorPIVnoNnhZI2GOhJY_M3LYUKuNKGKpQhZ8oPLqDlBJ-vK06L-U7my7-37-AwmU3G8_Fo-nwFTafiCo93DY3tV4E3sL_RxW35Ht_ci4x6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+2nd+International+Conference+on+Artificial+Intelligence%2C+Modelling+and+Simulation&rft.atitle=A+Semi-Supervised+Multi-view+Genetic+Algorithm&rft.au=Lazarova%2C+Gergana&rft.au=Koychev%2C+Ivan&rft.date=2014-11-01&rft.pub=IEEE&rft.spage=87&rft.epage=91&rft_id=info:doi/10.1109%2FAIMS.2014.37&rft.externalDocID=7102440 |