A Semi-Supervised Multi-view Genetic Algorithm

Semi-supervised learning combines labeled and unlabeled examples in order to find better future predictions. Usually, in this area of research we have massive amounts of unlabeled instances and few labeled ones. In this paper each instance has attributes from multiple sources of information (views)...

Full description

Saved in:
Bibliographic Details
Published in:2014 2nd International Conference on Artificial Intelligence, Modelling and Simulation pp. 87 - 91
Main Authors: Lazarova, Gergana, Koychev, Ivan
Format: Conference Proceeding
Language:English
Published: IEEE 01-11-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Semi-supervised learning combines labeled and unlabeled examples in order to find better future predictions. Usually, in this area of research we have massive amounts of unlabeled instances and few labeled ones. In this paper each instance has attributes from multiple sources of information (views) and a genetic algorithm is applied for regression function learning. Based on the few labeled examples and the agreement among the views on the unlabeled examples the error of the algorithm is optimized, striving after minimal regularized risk. The performance of the algorithm (based on RMSE: root-mean-square error), is compared to its supervised equivalent and shows very good results.
AbstractList Semi-supervised learning combines labeled and unlabeled examples in order to find better future predictions. Usually, in this area of research we have massive amounts of unlabeled instances and few labeled ones. In this paper each instance has attributes from multiple sources of information (views) and a genetic algorithm is applied for regression function learning. Based on the few labeled examples and the agreement among the views on the unlabeled examples the error of the algorithm is optimized, striving after minimal regularized risk. The performance of the algorithm (based on RMSE: root-mean-square error), is compared to its supervised equivalent and shows very good results.
Author Koychev, Ivan
Lazarova, Gergana
Author_xml – sequence: 1
  givenname: Gergana
  surname: Lazarova
  fullname: Lazarova, Gergana
  email: gerganal@fmi.uni-sofia.bg
  organization: Software Technol., Sofia Univ. "St. Kliment Ohridski", Sofia, Bulgaria
– sequence: 2
  givenname: Ivan
  surname: Koychev
  fullname: Koychev, Ivan
  email: koychev@fmi.uni-sofia.bg
  organization: Software Technol., Sofia Univ. "St. Kliment Ohridski", Sofia, Bulgaria
BookMark eNotzLFOwzAQAFAjwUALGxtLfsDhbJ_jeIwqKJVaMQTmyrHPcFKSVmlaxN8zwPS2txDX42EkIR4UlEqBf2o2u7bUoLA07kosFDrvXQVQ34qyKVoaWLbnI00XPlEqdud-Znlh-i7WNNLMsWj6z8PE89dwJ25y6E90_-9SfLw8v69e5fZtvVk1W8ka7SyVN50HTHXUAQAChgiQrA-WTHIZImSbTawghYRV3Wky2WgNnrzVXYdmKR7_Xiai_XHiIUw_e6dAI4L5BXjzPdU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIMS.2014.37
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 1479976008
9781479976003
9781479975990
1479975990
EndPage 91
ExternalDocumentID 7102440
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i245t-193b904d8c2a000a4ac00d59a5e3d7f0c0f5f3c60dad468b2e3f32209e952bb43
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:59 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i245t-193b904d8c2a000a4ac00d59a5e3d7f0c0f5f3c60dad468b2e3f32209e952bb43
PageCount 5
ParticipantIDs ieee_primary_7102440
PublicationCentury 2000
PublicationDate 2014-Nov.
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-Nov.
PublicationDecade 2010
PublicationTitle 2014 2nd International Conference on Artificial Intelligence, Modelling and Simulation
PublicationTitleAbbrev AIMSim
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.638138
Snippet Semi-supervised learning combines labeled and unlabeled examples in order to find better future predictions. Usually, in this area of research we have massive...
SourceID ieee
SourceType Publisher
StartPage 87
SubjectTerms Biological cells
Genetic algorithms
multi-view learning
Optimization
semi-supervised learning
Semisupervised learning
Sociology
Statistics
Training
Title A Semi-Supervised Multi-view Genetic Algorithm
URI https://ieeexplore.ieee.org/document/7102440
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sTz35aMU3e_BotttNsk2ORVvqQRFWwVtJNhMt2Adt9_-b2S0rghdvIQTCTBjmkfm-AbhVwQXZgdUMrRBMKPrfVSiZ1NzwQeGDFRLeeZoPn9_Vw5hocu4aLAwiVs1nGNOy-st3q6KkUlmfvKEQIUFvDbWqsVpNL7vujx6fcurVEjH_PSulchWTw_9dcgS9H8xd9NJ4k2M4wOUJdCgWrKmUuxCPohwXc5aXazLwLbqogs8yqu5HxB8dzkWjr49VSPg_Fz14m4xf76dsP-6AzVMhdyyEUlYnwqkiNUFFRpgiKEpqI5G7oU-KxEvPiyxxxolM2RS5D-aYaNQytVbwU2gvV0s8gygIZUIoMDA-ZG_OaJtK6zy3aDIpbJKeQ5cEn61rRovZXuaLv7cvoUNqrRF4V9DebUq8htbWlTfVG3wDcXyJKQ
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HuzJRyu-3YNH0243ye7mWLRli20RtoK3kmwmWrDdYrv_32S3rAhevIUQCDNhmEfm-wbgPrYuSPWUIKgYIyx2_7sxcsIFlbSXGWuFDu-cpNH0LX4aOJqchxoLg4hl8xl23LL8y9d5VrhSWdd5Q8Zsgn7AWRRGFVqr7mYX3f5okrpuLdahv6ellM5iePS_a46h_YO6815qf3ICe7g6haaLBisy5RZ0-l6KywVJi7Uz8Q1qrwTQElff9xyDtD3n9T_fc5vyfyzb8DoczB4Tsht4QBYB41tigyklfKbjLJBWSZLJzKqKC8mR6sj4mW-4oVnoa6lZGKsAqbEG6QsUPFCK0TNorPIVnoNnhZI2GOhJY_M3LYUKuNKGKpQhZ8oPLqDlBJ-vK06L-U7my7-37-AwmU3G8_Fo-nwFTafiCo93DY3tV4E3sL_RxW35Ht_ci4x6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+2nd+International+Conference+on+Artificial+Intelligence%2C+Modelling+and+Simulation&rft.atitle=A+Semi-Supervised+Multi-view+Genetic+Algorithm&rft.au=Lazarova%2C+Gergana&rft.au=Koychev%2C+Ivan&rft.date=2014-11-01&rft.pub=IEEE&rft.spage=87&rft.epage=91&rft_id=info:doi/10.1109%2FAIMS.2014.37&rft.externalDocID=7102440