Challenges in Using Neural Networks in Safety-Critical Applications

In this paper, we discuss challenges when using neural networks (NNs) in safety-critical applications. We address the challenges one by one, with aviation safety in mind. We then introduce a possible implementation to overcome the challenges. Only a small portion of the solution has been implemented...

Full description

Saved in:
Bibliographic Details
Published in:2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC) pp. 1 - 7
Main Authors: Forsberg, Hakan, Linden, Joakim, Hjorth, Johan, Manefjord, Torbjorn, Daneshtalab, Masoud
Format: Conference Proceeding
Language:English
Published: IEEE 11-10-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we discuss challenges when using neural networks (NNs) in safety-critical applications. We address the challenges one by one, with aviation safety in mind. We then introduce a possible implementation to overcome the challenges. Only a small portion of the solution has been implemented physically and much work is considered as future work. Our current understanding is that a real implementation in a safety-critical system would be extremely difficult. Firstly, to design the intended function of the NN, and secondly, designing monitors needed to achieve a deterministic and fail-safe behavior of the system. We conclude that only the most valuable implementations of NNs should be considered as meaningful to implement in safety-critical systems.
AbstractList In this paper, we discuss challenges when using neural networks (NNs) in safety-critical applications. We address the challenges one by one, with aviation safety in mind. We then introduce a possible implementation to overcome the challenges. Only a small portion of the solution has been implemented physically and much work is considered as future work. Our current understanding is that a real implementation in a safety-critical system would be extremely difficult. Firstly, to design the intended function of the NN, and secondly, designing monitors needed to achieve a deterministic and fail-safe behavior of the system. We conclude that only the most valuable implementations of NNs should be considered as meaningful to implement in safety-critical systems.
Author Forsberg, Hakan
Daneshtalab, Masoud
Manefjord, Torbjorn
Hjorth, Johan
Linden, Joakim
Author_xml – sequence: 1
  givenname: Hakan
  surname: Forsberg
  fullname: Forsberg, Hakan
  email: hakan.forsberg@mdh.se
  organization: Mälardalen University,School of Innovation, Design and Engineering, Division of Intelligent Future Technologies,Västerås,Sweden,721 23
– sequence: 2
  givenname: Joakim
  surname: Linden
  fullname: Linden, Joakim
  email: joakim.linden@saabgroup.com
  organization: Gripen C/D, Saab Aeronautics,Järfälla,Sweden
– sequence: 3
  givenname: Johan
  surname: Hjorth
  fullname: Hjorth, Johan
  email: johan.hjorth@mdh.se
  organization: Mälardalen University,School of Innovation, Design and Engineering, Division of Intelligent Future Technologies,Västerås,Sweden,721 23
– sequence: 4
  givenname: Torbjorn
  surname: Manefjord
  fullname: Manefjord, Torbjorn
  email: torbjorn.manefjord@saabgroup.com
  organization: Avionics Systems, Saab,Huskvarna,Sweden
– sequence: 5
  givenname: Masoud
  surname: Daneshtalab
  fullname: Daneshtalab, Masoud
  email: masoud.daneshtalab@mdh.se
  organization: Mälardalen University,School of Innovation, Design and Engineering, Division of Intelligent Future Technologies,Västerås,Sweden,721 23
BookMark eNotj99KwzAYxaMouM09gSB9gdYvX_4suSzRqTD0Yu56pGk6ozUtTUX29hbd1e_AORzOmZOL2EVPyC2FglLQd_fl1gjQTBUICIVGIQXVZ2ROV6ioVij0OZkhFSJfIegrskzpAwAoqCnJZ8SYd9u2Ph58ykLMdinEQ_bivwfbThh_uuHzz9jaxo_H3AxhDG7yyr5vJzGGLqZrctnYNvnliQuyWz-8mad88_r4bMpNHpDDOA0Q2jFGFdaO-7qWFXeOYaW0lSgQQTrLKu8aJi1IzlwjuJYOqoZxahlnC3Lz3xu89_t-CF92OO5Pn9kvsNhNFQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DASC50938.2020.9256519
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728198259
9781728198255
EISSN 2155-7209
EndPage 7
ExternalDocumentID 9256519
Genre orig-research
GrantInformation_xml – fundername: Vinnova
  funderid: 10.13039/501100001858
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i240t-7259c33182dc4edd6b4cc32b89a6252206ca3becf36a0643cf5496c0bf341a343
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:45 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i240t-7259c33182dc4edd6b4cc32b89a6252206ca3becf36a0643cf5496c0bf341a343
PageCount 7
ParticipantIDs ieee_primary_9256519
PublicationCentury 2000
PublicationDate 2020-Oct.-11
PublicationDateYYYYMMDD 2020-10-11
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-11
  day: 11
PublicationDecade 2020
PublicationTitle 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)
PublicationTitleAbbrev DASC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001085654
Score 1.8068814
Snippet In this paper, we discuss challenges when using neural networks (NNs) in safety-critical applications. We address the challenges one by one, with aviation...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
avionics
Biological neural networks
deep neural networks
machine learning
Monitoring
Safety
safety-critical
Sensors
Software
Uncertainty
Title Challenges in Using Neural Networks in Safety-Critical Applications
URI https://ieeexplore.ieee.org/document/9256519
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwEBZNti5tSUrfeOhYJdbDkjUGJyFTKbiFbkHWAwLFKY099N_npDhJC106WVgI4xPiu9PdfR9Cj9qkTpNK4IqFNKNyEmsvFLbESpsFwrQo2rco5fN7Pp0FmpynQy-Mcy4Wn7lRGMZcvl2bNlyVjRXgcxY4PntS5btereN9CvgOIuNdEzBJ1Xg6KQuAQxYKuGg66hb_UlGJIDI_-9_nz9Hw2I2XvBxw5gKduHqAimKvgrJJVnUSM_9JYNrQH_CIpd1xotTeNd94r2iQTH4krIfobT57LRa4E0TAKwDeBkuIVQyDU0it4c5aUXFjGK1ypSGMoTQVRjPYFM-EDq6G8RD9CZNWHrBKM84uUb9e1-4KJcoSTYXlVKYVlwK8RC698hnzEIExTa7RIBhg-bnjvFh2_37z9-tbdBpsHErcMCF3qN98te4e9Ta2fYjbtAVR35Ho
link.rule.ids 310,311,782,786,791,792,798,23939,23940,25149,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD3pSA8a3e_BoYfvYlh7JAsGIxARMvJFuHwmJWYzAwX_vtCygiRdPu9lmk91p2m-mM_N9CN1rkzpNCoELFtKMykmsvVDYEittFgjTomjfYCxHb-1uL9DkPGx7YZxzsfjMNcNtzOXbuVmFo7KWAnzOAsfnQcalkOturd2JCngPIuNVGzBJVavbGecAiCyUcNG0Wb3-S0clwkj_-H8fcIIau3685GWLNKdoz5V1lOcbHZRFMiuTmPtPAteGfodLLO6OA2Pt3fILbzQNks6PlHUDvfZ7k3yAK0kEPAPoXWIJ0YphsA6pNdxZKwpuDKNFW2kIZChNhdEMpsUzoYOzYTzEf8KkhQe00oyzM1Qr56U7R4myRFNhOZVpAdYEP5FLr3zGPMRgTJMLVA8GmH6sWS-m1b9f_v34Dh0OJs_D6fBx9HSFjoK9ww5PyDWqLT9X7gbtL-zqNs7YN6F1lQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2020+AIAA%2FIEEE+39th+Digital+Avionics+Systems+Conference+%28DASC%29&rft.atitle=Challenges+in+Using+Neural+Networks+in+Safety-Critical+Applications&rft.au=Forsberg%2C+Hakan&rft.au=Linden%2C+Joakim&rft.au=Hjorth%2C+Johan&rft.au=Manefjord%2C+Torbjorn&rft.date=2020-10-11&rft.pub=IEEE&rft.eissn=2155-7209&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDASC50938.2020.9256519&rft.externalDocID=9256519