Mixed pooling neural networks for color constancy

Color constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In computer vision, the main approach consists in estimating the illuminant color and then to remove its impact on the color of the objects. Many i...

Full description

Saved in:
Bibliographic Details
Published in:2016 IEEE International Conference on Image Processing (ICIP) pp. 3997 - 4001
Main Authors: Fourure, D., Emonet, R., Fromont, E., Muselet, D., Tremeau, A., Wolf, C.
Format: Conference Proceeding
Language:English
Published: IEEE 01-09-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Color constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In computer vision, the main approach consists in estimating the illuminant color and then to remove its impact on the color of the objects. Many image processing algorithms have been proposed to tackle this problem automatically. However, most of these approaches are handcrafted and mostly rely on strong empirical assumptions, e.g., that the average reflectance in a scene is gray. State-of-the-art approaches can perform very well on some given datasets but poorly adapt on some others. In this paper, we have investigated how neural networks-based approaches can be used to deal with the color constancy problem. We have proposed a new network architecture based on existing successful hand-crafted approaches and a large number of improvements to tackle this problem by learning a suitable deep model. We show our results on most of the standard benchmarks used in the color constancy domain.
AbstractList Color constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In computer vision, the main approach consists in estimating the illuminant color and then to remove its impact on the color of the objects. Many image processing algorithms have been proposed to tackle this problem automatically. However, most of these approaches are handcrafted and mostly rely on strong empirical assumptions, e.g., that the average reflectance in a scene is gray. State-of-the-art approaches can perform very well on some given datasets but poorly adapt on some others. In this paper, we have investigated how neural networks-based approaches can be used to deal with the color constancy problem. We have proposed a new network architecture based on existing successful hand-crafted approaches and a large number of improvements to tackle this problem by learning a suitable deep model. We show our results on most of the standard benchmarks used in the color constancy domain.
Author Fromont, E.
Emonet, R.
Fourure, D.
Tremeau, A.
Wolf, C.
Muselet, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Fourure
  fullname: Fourure, D.
  organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France
– sequence: 2
  givenname: R.
  surname: Emonet
  fullname: Emonet, R.
  organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France
– sequence: 3
  givenname: E.
  surname: Fromont
  fullname: Fromont, E.
  organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France
– sequence: 4
  givenname: D.
  surname: Muselet
  fullname: Muselet, D.
  organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France
– sequence: 5
  givenname: A.
  surname: Tremeau
  fullname: Tremeau, A.
  organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France
– sequence: 6
  givenname: C.
  surname: Wolf
  fullname: Wolf, C.
  organization: INSA-Lyon, Univ. de Lyon, Lyon, France
BookMark eNotj81Kw0AUhUdRsK19AHGTF0icO3d-lxK0BirtovsyTe5INM6UJKJ9e4N2cz44fBw4c3YVUyTG7oAXANw9VGW1LQQHXRiFOFUXbOmMBakNOqdBX7KZQAu5VdLdsPkwvHM--QgzBq_tDzXZMaWujW9ZpK_edxPG79R_DFlIfVan7i_jMPpYn27ZdfDdQMszF2z3_LQrX_L1ZlWVj-u8FWDHXEtFJELjjEdBBrwIigJKfwjCKGWVosba2goBzvkaHXBlmwMGESQPHBfs_n-2JaL9sW8_fX_anw_iL6WVRaQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2016.7533110
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781467399616
1467399612
EISSN 2381-8549
EndPage 4001
ExternalDocumentID 7533110
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i218t-645ee2fd97a32e71a2f5ef34abf2755855ed88c822199ac391058db3f2f40f03
IEDL.DBID RIE
IngestDate Wed Jun 26 19:23:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i218t-645ee2fd97a32e71a2f5ef34abf2755855ed88c822199ac391058db3f2f40f03
OpenAccessLink https://hal.science/hal-01314066/document
PageCount 5
ParticipantIDs ieee_primary_7533110
PublicationCentury 2000
PublicationDate 2016-Sept.
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.193798
Snippet Color constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In...
SourceID ieee
SourceType Publisher
StartPage 3997
SubjectTerms Color constancy
Computer architecture
Computer vision
Data augmentation
Estimation
Image color analysis
Light color estimation
Lighting
Neural networks
Pooling
Training
Title Mixed pooling neural networks for color constancy
URI https://ieeexplore.ieee.org/document/7533110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64nTxN3cTf9ODRbk3SrMl5bmwHZeAO3kbavMBAOrEb6H_ve22ZCF68pCG0hKSE70vyvu8B3KOXSuWZiI31IU4dLUUnlY1lCC5JBXEOZDXy_CV7fjWPU7bJeThoYRCxDj7DIVfru3y_LfZ8VDYiaq0E66k6mTWNVuuwuWLfmPbWUiR2tJgslhy4NR62H_3KnlKDx6z3v25PYPCjwouWB3w5hSMsz6DX0saoXZRVH8TT5pMaOFkWvRexQ6V7o0cd311FxEojtqbmsuaCxdcAVrPpajKP20wI8YYgeBePU40og7eZUxIz4WTQGFTq8iAzTYxfozemILAX1rpCEQfQxucqyJAmIVHn0C23JV5A5Aiy0XgCLO9Tb7XzxJhoy4Ve5Yi5voQ-T8D6vfG6WLdjv_q7-RqOeY6bmKsb6O4-9ngLncrv7-q_8w3Y15Ch
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RPOgJFYy_3cGjg_UXXc8IgQiERA7eSLe-JiQGiINE_3tfx4Ix8eKla5otTbs039f2fd8DeETHhcg0i1PjfCwtLUXLhYm59zaRjDgHBjXy4FVP3tLnXrDJedprYRCxDD7DVqiWd_lulW_DUVmbqLVgQU91pKTu6J1aa7-9Cs4x1b0lS0x72B1OQ-hWp1V99it_Sgkf_fr_Oj6F5o8OL5ruEeYMDnB5DvWKOEbVsiwawMaLT2oI6bLovSh4VNp3epQR3kVEvDQK5tShLNlg_tWEWb836w7iKhdCvCAQ3sQdqRC5d0ZbwVEzy71CL6TNPNeKOL9Cl6Y5wT0zxuaCWIBKXSY89zLxibiA2nK1xEuILIE2po4gyznpjLKOOBNtutCJDDFTV9AIEzBf79wu5tXYr_9ufoDjwWw8mo-Gk5cbOAnzvYvAuoXa5mOLd3BYuO19-ae-AajBk_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Mixed+pooling+neural+networks+for+color+constancy&rft.au=Fourure%2C+D.&rft.au=Emonet%2C+R.&rft.au=Fromont%2C+E.&rft.au=Muselet%2C+D.&rft.date=2016-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3997&rft.epage=4001&rft_id=info:doi/10.1109%2FICIP.2016.7533110&rft.externalDocID=7533110