Mixed pooling neural networks for color constancy
Color constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In computer vision, the main approach consists in estimating the illuminant color and then to remove its impact on the color of the objects. Many i...
Saved in:
Published in: | 2016 IEEE International Conference on Image Processing (ICIP) pp. 3997 - 4001 |
---|---|
Main Authors: | , , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-09-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Color constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In computer vision, the main approach consists in estimating the illuminant color and then to remove its impact on the color of the objects. Many image processing algorithms have been proposed to tackle this problem automatically. However, most of these approaches are handcrafted and mostly rely on strong empirical assumptions, e.g., that the average reflectance in a scene is gray. State-of-the-art approaches can perform very well on some given datasets but poorly adapt on some others. In this paper, we have investigated how neural networks-based approaches can be used to deal with the color constancy problem. We have proposed a new network architecture based on existing successful hand-crafted approaches and a large number of improvements to tackle this problem by learning a suitable deep model. We show our results on most of the standard benchmarks used in the color constancy domain. |
---|---|
AbstractList | Color constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In computer vision, the main approach consists in estimating the illuminant color and then to remove its impact on the color of the objects. Many image processing algorithms have been proposed to tackle this problem automatically. However, most of these approaches are handcrafted and mostly rely on strong empirical assumptions, e.g., that the average reflectance in a scene is gray. State-of-the-art approaches can perform very well on some given datasets but poorly adapt on some others. In this paper, we have investigated how neural networks-based approaches can be used to deal with the color constancy problem. We have proposed a new network architecture based on existing successful hand-crafted approaches and a large number of improvements to tackle this problem by learning a suitable deep model. We show our results on most of the standard benchmarks used in the color constancy domain. |
Author | Fromont, E. Emonet, R. Fourure, D. Tremeau, A. Wolf, C. Muselet, D. |
Author_xml | – sequence: 1 givenname: D. surname: Fourure fullname: Fourure, D. organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France – sequence: 2 givenname: R. surname: Emonet fullname: Emonet, R. organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France – sequence: 3 givenname: E. surname: Fromont fullname: Fromont, E. organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France – sequence: 4 givenname: D. surname: Muselet fullname: Muselet, D. organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France – sequence: 5 givenname: A. surname: Tremeau fullname: Tremeau, A. organization: Lab. Hubert Curien, Univ. de Lyon, Lyon, France – sequence: 6 givenname: C. surname: Wolf fullname: Wolf, C. organization: INSA-Lyon, Univ. de Lyon, Lyon, France |
BookMark | eNotj81Kw0AUhUdRsK19AHGTF0icO3d-lxK0BirtovsyTe5INM6UJKJ9e4N2cz44fBw4c3YVUyTG7oAXANw9VGW1LQQHXRiFOFUXbOmMBakNOqdBX7KZQAu5VdLdsPkwvHM--QgzBq_tDzXZMaWujW9ZpK_edxPG79R_DFlIfVan7i_jMPpYn27ZdfDdQMszF2z3_LQrX_L1ZlWVj-u8FWDHXEtFJELjjEdBBrwIigJKfwjCKGWVosba2goBzvkaHXBlmwMGESQPHBfs_n-2JaL9sW8_fX_anw_iL6WVRaQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2016.7533110 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781467399616 1467399612 |
EISSN | 2381-8549 |
EndPage | 4001 |
ExternalDocumentID | 7533110 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i218t-645ee2fd97a32e71a2f5ef34abf2755855ed88c822199ac391058db3f2f40f03 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:23:50 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i218t-645ee2fd97a32e71a2f5ef34abf2755855ed88c822199ac391058db3f2f40f03 |
OpenAccessLink | https://hal.science/hal-01314066/document |
PageCount | 5 |
ParticipantIDs | ieee_primary_7533110 |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 |
Score | 2.193798 |
Snippet | Color constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3997 |
SubjectTerms | Color constancy Computer architecture Computer vision Data augmentation Estimation Image color analysis Light color estimation Lighting Neural networks Pooling Training |
Title | Mixed pooling neural networks for color constancy |
URI | https://ieeexplore.ieee.org/document/7533110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64nTxN3cTf9ODRbk3SrMl5bmwHZeAO3kbavMBAOrEb6H_ve22ZCF68pCG0hKSE70vyvu8B3KOXSuWZiI31IU4dLUUnlY1lCC5JBXEOZDXy_CV7fjWPU7bJeThoYRCxDj7DIVfru3y_LfZ8VDYiaq0E66k6mTWNVuuwuWLfmPbWUiR2tJgslhy4NR62H_3KnlKDx6z3v25PYPCjwouWB3w5hSMsz6DX0saoXZRVH8TT5pMaOFkWvRexQ6V7o0cd311FxEojtqbmsuaCxdcAVrPpajKP20wI8YYgeBePU40og7eZUxIz4WTQGFTq8iAzTYxfozemILAX1rpCEQfQxucqyJAmIVHn0C23JV5A5Aiy0XgCLO9Tb7XzxJhoy4Ve5Yi5voQ-T8D6vfG6WLdjv_q7-RqOeY6bmKsb6O4-9ngLncrv7-q_8w3Y15Ch |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RPOgJFYy_3cGjg_UXXc8IgQiERA7eSLe-JiQGiINE_3tfx4Ix8eKla5otTbs039f2fd8DeETHhcg0i1PjfCwtLUXLhYm59zaRjDgHBjXy4FVP3tLnXrDJedprYRCxDD7DVqiWd_lulW_DUVmbqLVgQU91pKTu6J1aa7-9Cs4x1b0lS0x72B1OQ-hWp1V99it_Sgkf_fr_Oj6F5o8OL5ruEeYMDnB5DvWKOEbVsiwawMaLT2oI6bLovSh4VNp3epQR3kVEvDQK5tShLNlg_tWEWb836w7iKhdCvCAQ3sQdqRC5d0ZbwVEzy71CL6TNPNeKOL9Cl6Y5wT0zxuaCWIBKXSY89zLxibiA2nK1xEuILIE2po4gyznpjLKOOBNtutCJDDFTV9AIEzBf79wu5tXYr_9ufoDjwWw8mo-Gk5cbOAnzvYvAuoXa5mOLd3BYuO19-ae-AajBk_I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Mixed+pooling+neural+networks+for+color+constancy&rft.au=Fourure%2C+D.&rft.au=Emonet%2C+R.&rft.au=Fromont%2C+E.&rft.au=Muselet%2C+D.&rft.date=2016-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3997&rft.epage=4001&rft_id=info:doi/10.1109%2FICIP.2016.7533110&rft.externalDocID=7533110 |