A Performance Model for GPU-Accelerated FDTD Applications
In this work we develop, validate and use a performance model for a Finite-Difference Time-Domain (FDTD) application which is parallelized on multiple GPUs. FDTD is a method for simulating electrodynamic interaction and is applied in a number of research and engineering areas. In this work we focus...
Saved in:
Published in: | 2015 IEEE 22nd International Conference on High Performance Computing (HiPC) pp. 185 - 193 |
---|---|
Main Authors: | , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-12-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work we develop, validate and use a performance model for a Finite-Difference Time-Domain (FDTD) application which is parallelized on multiple GPUs. FDTD is a method for simulating electrodynamic interaction and is applied in a number of research and engineering areas. In this work we focus on a particular implementation called B-CALM (Belgium-California Light Machine). We adopt a simple, semi-empirical modelling approach to design a model which we validate for different hardware architectures. Using the model allows making implementation decisions and exploring the architectural design space with the goal of optimizing HPC systems for this application. |
---|---|
DOI: | 10.1109/HiPC.2015.24 |