Integration of Heterogeneous Computational Platform-Based, Ai-Capable Planetary Rover Using ROS 2

Space exploration has experienced a surge in interest and accessibility, with an increasing number of spacecraft launches. However, the scaling of space technology faces challenges as it heavily relies on human supervision and intervention. To overcome these limitations and enable greater autonomy,...

Full description

Saved in:
Bibliographic Details
Published in:IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium pp. 2014 - 2017
Main Authors: Kraft, Marek, Walas, Krzysztof, Ptak, Bartosz, Bidzinski, Michal, Stezala, Krzysztof, Pieczynski, Dominik
Format: Conference Proceeding
Language:English
Published: IEEE 16-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Space exploration has experienced a surge in interest and accessibility, with an increasing number of spacecraft launches. However, the scaling of space technology faces challenges as it heavily relies on human supervision and intervention. To overcome these limitations and enable greater autonomy, recent advancements in software and hardware, particularly in commercial off-the-shelf (COTS) components, have provided new opportunities. This paper introduces a prototype of a tightly-coupled hardware-software system that leverages a standard COTS computational platform and deep learning coprocessors to enable the efficient execution of deep learning workloads for space rovers. Integrated within the Robot Operating System 2 (ROS 2) framework, the system incorporates onboard sensors and offers rapid prototyping capabilities. By harnessing the benefits of COTS components and advanced software frameworks, this system represents a step towards achieving increased autonomy in space rovers, while also reducing development time. The presented system showcases the potential for future advancements in autonomous space exploration. The project documentation is publicly available: https://github.com/PUTvision/ros2_fpga_inference_node
AbstractList Space exploration has experienced a surge in interest and accessibility, with an increasing number of spacecraft launches. However, the scaling of space technology faces challenges as it heavily relies on human supervision and intervention. To overcome these limitations and enable greater autonomy, recent advancements in software and hardware, particularly in commercial off-the-shelf (COTS) components, have provided new opportunities. This paper introduces a prototype of a tightly-coupled hardware-software system that leverages a standard COTS computational platform and deep learning coprocessors to enable the efficient execution of deep learning workloads for space rovers. Integrated within the Robot Operating System 2 (ROS 2) framework, the system incorporates onboard sensors and offers rapid prototyping capabilities. By harnessing the benefits of COTS components and advanced software frameworks, this system represents a step towards achieving increased autonomy in space rovers, while also reducing development time. The presented system showcases the potential for future advancements in autonomous space exploration. The project documentation is publicly available: https://github.com/PUTvision/ros2_fpga_inference_node
Author Ptak, Bartosz
Kraft, Marek
Stezala, Krzysztof
Pieczynski, Dominik
Walas, Krzysztof
Bidzinski, Michal
Author_xml – sequence: 1
  givenname: Marek
  surname: Kraft
  fullname: Kraft, Marek
  email: marek.kraft@put.poznan.pl
  organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965
– sequence: 2
  givenname: Krzysztof
  surname: Walas
  fullname: Walas, Krzysztof
  organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965
– sequence: 3
  givenname: Bartosz
  surname: Ptak
  fullname: Ptak, Bartosz
  organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965
– sequence: 4
  givenname: Michal
  surname: Bidzinski
  fullname: Bidzinski, Michal
  organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965
– sequence: 5
  givenname: Krzysztof
  surname: Stezala
  fullname: Stezala, Krzysztof
  organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965
– sequence: 6
  givenname: Dominik
  surname: Pieczynski
  fullname: Pieczynski, Dominik
  organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965
BookMark eNo1kE1rAjEURdPSQtX6D7pI9x37khjzsrSDVUGwaF1LZnyRKWMiM7HQf1_tx-peOHA53C67CTEQY48CBkKAfZ5Px6v1WksBOJAg1UCARIFSXbG-NRaVBiVBgLlmHSm0ygyAumPdtv04F5QAHebmIdG-camKgUfPZ5SoiXsKFE8tz-PheEo_0NX8rXbJx-aQvbiWdk98XGW5O7qipgsKlFzzxVfxkxq-aauw56vlmst7dutd3VL_L3ts8zp5z2fZYjmd5-NFVkkYpmwoCnQlKmMVeqNN4bVBX9AOvS1FcdZFZxH1UFg78qW0Iz3yVolSGaMv0WMPv7sVEW2PTXU462z_L1Hf4ZdXuA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS52108.2023.10281823
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9798350320107
EISSN 2153-7003
EndPage 2017
ExternalDocumentID 10281823
Genre orig-research
GrantInformation_xml – fundername: European Space Agency
  funderid: 10.13039/501100000844
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i204t-41b8ac837938f757bf578fbed8f9c1b3828a988541996fc29656f931c377531c3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:24:09 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-41b8ac837938f757bf578fbed8f9c1b3828a988541996fc29656f931c377531c3
PageCount 4
ParticipantIDs ieee_primary_10281823
PublicationCentury 2000
PublicationDate 2023-July-16
PublicationDateYYYYMMDD 2023-07-16
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-16
  day: 16
PublicationDecade 2020
PublicationTitle IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium
PublicationTitleAbbrev IGARSS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.8896983
Snippet Space exploration has experienced a surge in interest and accessibility, with an increasing number of spacecraft launches. However, the scaling of space...
SourceID ieee
SourceType Publisher
StartPage 2014
SubjectTerms Deep learning
Rapid prototyping
Remote sensing
Robot sensing systems
Robotics
ROS
Sensor systems
Software
Space
Space exploration
Space vehicles
Title Integration of Heterogeneous Computational Platform-Based, Ai-Capable Planetary Rover Using ROS 2
URI https://ieeexplore.ieee.org/document/10281823
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sQfHkq-KbFTy6bbK7STbHWvu6aGkUvJV9QqEkUtND_72zaVrx4MFTQkIIfJvkm5l8Mx9CD5xyR5kOiaGOEs5TRoTUMXGR1TKGgERU3oCjLHn5EM99PyaH7HphrLWV-My2_W71L98UeuVLZR1PhhAPswZqJKnYNGttP7sMqCw4QPf1EM3OeNidZhmQU-AFXJS1txf_slGpWGRw9M_7H6PWTz8enuyY5gTt2fwU7Q8rU971GZLjeuYDYIwLh0de4lLAk2Ehrccb34a65ocnC1n6OJU8AX2ZR9ydkx7wpVpYfyq3pVyu8dTrOnGlJsDT1wzTFnof9N96I1JbJ5A5DXhJeKgAckg-UyZcEiXKwZvplDXCpTpUAJaQqRAR9yJkp2kKYZ1LWahZAvkLbM5RMy9ye4Gw0IY5w0xsLONOBTI2kYIsKlAyiaTll6jlkZp9bqZjzLYgXf1x_Bod-vXw9dEwvkHNcrmyt6jxZVZ31YJ-A5_YoDc
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4IxsfJF8a3a-LRxba7bbdHRKBEREIx8Ua2-0hISDFYDvx7Z0vBePDgqU2bJs23bb-Z6TfzIXTPPGY8Kl2iPOMRxiJKuJABMb6WIoCAhBfegHES9j_4c8uOySGbXhitdSE-03W7W_zLVzO5sKWyR0uGEA_TCtr2WRiEq3at9YeXApk5u-iuHKP52O00hkkC9ORYCZdH6-vLfxmpFDzSPvjnHRyi2k9HHh5suOYIbensGO10Clve5QkS3XLqA6CMZwbHVuQyg2dDQ2KPV84NZdUPD6Yit5EqeQICUw-4MSFNYMx0qu2pTOdivsRDq-zEhZ4AD98S7NXQe7s1asakNE8gE89hOWFuCqBD-hlRbkI_TA28mybViptIuimAxUXEuc-sDNlIL4LAzkTUlTSEDAY2p6iazTJ9hjCXihpFVaA0ZSZ1RKD8FPIoJxWhLzQ7RzWL1PhzNR9jvAbp4o_jt2gvHr32xr1u_-US7du1sdVSN7hC1Xy-0Neo8qUWN8XifgM_AKOI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IGARSS+2023+-+2023+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=Integration+of+Heterogeneous+Computational+Platform-Based%2C+Ai-Capable+Planetary+Rover+Using+ROS+2&rft.au=Kraft%2C+Marek&rft.au=Walas%2C+Krzysztof&rft.au=Ptak%2C+Bartosz&rft.au=Bidzinski%2C+Michal&rft.date=2023-07-16&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=2014&rft.epage=2017&rft_id=info:doi/10.1109%2FIGARSS52108.2023.10281823&rft.externalDocID=10281823