Integration of Heterogeneous Computational Platform-Based, Ai-Capable Planetary Rover Using ROS 2
Space exploration has experienced a surge in interest and accessibility, with an increasing number of spacecraft launches. However, the scaling of space technology faces challenges as it heavily relies on human supervision and intervention. To overcome these limitations and enable greater autonomy,...
Saved in:
Published in: | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium pp. 2014 - 2017 |
---|---|
Main Authors: | , , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
16-07-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Space exploration has experienced a surge in interest and accessibility, with an increasing number of spacecraft launches. However, the scaling of space technology faces challenges as it heavily relies on human supervision and intervention. To overcome these limitations and enable greater autonomy, recent advancements in software and hardware, particularly in commercial off-the-shelf (COTS) components, have provided new opportunities. This paper introduces a prototype of a tightly-coupled hardware-software system that leverages a standard COTS computational platform and deep learning coprocessors to enable the efficient execution of deep learning workloads for space rovers. Integrated within the Robot Operating System 2 (ROS 2) framework, the system incorporates onboard sensors and offers rapid prototyping capabilities. By harnessing the benefits of COTS components and advanced software frameworks, this system represents a step towards achieving increased autonomy in space rovers, while also reducing development time. The presented system showcases the potential for future advancements in autonomous space exploration. The project documentation is publicly available: https://github.com/PUTvision/ros2_fpga_inference_node |
---|---|
AbstractList | Space exploration has experienced a surge in interest and accessibility, with an increasing number of spacecraft launches. However, the scaling of space technology faces challenges as it heavily relies on human supervision and intervention. To overcome these limitations and enable greater autonomy, recent advancements in software and hardware, particularly in commercial off-the-shelf (COTS) components, have provided new opportunities. This paper introduces a prototype of a tightly-coupled hardware-software system that leverages a standard COTS computational platform and deep learning coprocessors to enable the efficient execution of deep learning workloads for space rovers. Integrated within the Robot Operating System 2 (ROS 2) framework, the system incorporates onboard sensors and offers rapid prototyping capabilities. By harnessing the benefits of COTS components and advanced software frameworks, this system represents a step towards achieving increased autonomy in space rovers, while also reducing development time. The presented system showcases the potential for future advancements in autonomous space exploration. The project documentation is publicly available: https://github.com/PUTvision/ros2_fpga_inference_node |
Author | Ptak, Bartosz Kraft, Marek Stezala, Krzysztof Pieczynski, Dominik Walas, Krzysztof Bidzinski, Michal |
Author_xml | – sequence: 1 givenname: Marek surname: Kraft fullname: Kraft, Marek email: marek.kraft@put.poznan.pl organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965 – sequence: 2 givenname: Krzysztof surname: Walas fullname: Walas, Krzysztof organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965 – sequence: 3 givenname: Bartosz surname: Ptak fullname: Ptak, Bartosz organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965 – sequence: 4 givenname: Michal surname: Bidzinski fullname: Bidzinski, Michal organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965 – sequence: 5 givenname: Krzysztof surname: Stezala fullname: Stezala, Krzysztof organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965 – sequence: 6 givenname: Dominik surname: Pieczynski fullname: Pieczynski, Dominik organization: Poznań University of Technology,Institute of Robotics and Machine Intelligence,Poznań,Poland,60-965 |
BookMark | eNo1kE1rAjEURdPSQtX6D7pI9x37khjzsrSDVUGwaF1LZnyRKWMiM7HQf1_tx-peOHA53C67CTEQY48CBkKAfZ5Px6v1WksBOJAg1UCARIFSXbG-NRaVBiVBgLlmHSm0ygyAumPdtv04F5QAHebmIdG-camKgUfPZ5SoiXsKFE8tz-PheEo_0NX8rXbJx-aQvbiWdk98XGW5O7qipgsKlFzzxVfxkxq-aauw56vlmst7dutd3VL_L3ts8zp5z2fZYjmd5-NFVkkYpmwoCnQlKmMVeqNN4bVBX9AOvS1FcdZFZxH1UFg78qW0Iz3yVolSGaMv0WMPv7sVEW2PTXU462z_L1Hf4ZdXuA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS52108.2023.10281823 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 9798350320107 |
EISSN | 2153-7003 |
EndPage | 2017 |
ExternalDocumentID | 10281823 |
Genre | orig-research |
GrantInformation_xml | – fundername: European Space Agency funderid: 10.13039/501100000844 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i204t-41b8ac837938f757bf578fbed8f9c1b3828a988541996fc29656f931c377531c3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:24:09 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-41b8ac837938f757bf578fbed8f9c1b3828a988541996fc29656f931c377531c3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10281823 |
PublicationCentury | 2000 |
PublicationDate | 2023-July-16 |
PublicationDateYYYYMMDD | 2023-07-16 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.8896983 |
Snippet | Space exploration has experienced a surge in interest and accessibility, with an increasing number of spacecraft launches. However, the scaling of space... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2014 |
SubjectTerms | Deep learning Rapid prototyping Remote sensing Robot sensing systems Robotics ROS Sensor systems Software Space Space exploration Space vehicles |
Title | Integration of Heterogeneous Computational Platform-Based, Ai-Capable Planetary Rover Using ROS 2 |
URI | https://ieeexplore.ieee.org/document/10281823 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sQfHkq-KbFTy6bbK7STbHWvu6aGkUvJV9QqEkUtND_72zaVrx4MFTQkIIfJvkm5l8Mx9CD5xyR5kOiaGOEs5TRoTUMXGR1TKGgERU3oCjLHn5EM99PyaH7HphrLWV-My2_W71L98UeuVLZR1PhhAPswZqJKnYNGttP7sMqCw4QPf1EM3OeNidZhmQU-AFXJS1txf_slGpWGRw9M_7H6PWTz8enuyY5gTt2fwU7Q8rU971GZLjeuYDYIwLh0de4lLAk2Ehrccb34a65ocnC1n6OJU8AX2ZR9ydkx7wpVpYfyq3pVyu8dTrOnGlJsDT1wzTFnof9N96I1JbJ5A5DXhJeKgAckg-UyZcEiXKwZvplDXCpTpUAJaQqRAR9yJkp2kKYZ1LWahZAvkLbM5RMy9ye4Gw0IY5w0xsLONOBTI2kYIsKlAyiaTll6jlkZp9bqZjzLYgXf1x_Bod-vXw9dEwvkHNcrmyt6jxZVZ31YJ-A5_YoDc |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4IxsfJF8a3a-LRxba7bbdHRKBEREIx8Ua2-0hISDFYDvx7Z0vBePDgqU2bJs23bb-Z6TfzIXTPPGY8Kl2iPOMRxiJKuJABMb6WIoCAhBfegHES9j_4c8uOySGbXhitdSE-03W7W_zLVzO5sKWyR0uGEA_TCtr2WRiEq3at9YeXApk5u-iuHKP52O00hkkC9ORYCZdH6-vLfxmpFDzSPvjnHRyi2k9HHh5suOYIbensGO10Clve5QkS3XLqA6CMZwbHVuQyg2dDQ2KPV84NZdUPD6Yit5EqeQICUw-4MSFNYMx0qu2pTOdivsRDq-zEhZ4AD98S7NXQe7s1asakNE8gE89hOWFuCqBD-hlRbkI_TA28mybViptIuimAxUXEuc-sDNlIL4LAzkTUlTSEDAY2p6iazTJ9hjCXihpFVaA0ZSZ1RKD8FPIoJxWhLzQ7RzWL1PhzNR9jvAbp4o_jt2gvHr32xr1u_-US7du1sdVSN7hC1Xy-0Neo8qUWN8XifgM_AKOI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IGARSS+2023+-+2023+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=Integration+of+Heterogeneous+Computational+Platform-Based%2C+Ai-Capable+Planetary+Rover+Using+ROS+2&rft.au=Kraft%2C+Marek&rft.au=Walas%2C+Krzysztof&rft.au=Ptak%2C+Bartosz&rft.au=Bidzinski%2C+Michal&rft.date=2023-07-16&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=2014&rft.epage=2017&rft_id=info:doi/10.1109%2FIGARSS52108.2023.10281823&rft.externalDocID=10281823 |