How Much Wavelet Decomposition can Improve the Detection of Surface Fractures in Remote Sensing Images?

In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We show, in a first step, the capability of a translation invariant wavelet multiscale decomposition (NDWT) to separate the information related...

Full description

Saved in:
Bibliographic Details
Published in:IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium pp. 2619 - 2622
Main Authors: de Souza, Eniuce Menezes, Marques, Ademir, Horota, Rafael K., Kupssinsku, Lucas, Rossa, Pedro, Aires, Alysson S., Silveira, Luiz Gonzaga, Veronez, Mauricio R., Cazarin, Carol L.
Format: Conference Proceeding
Language:English
Published: IEEE 26-09-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We show, in a first step, the capability of a translation invariant wavelet multiscale decomposition (NDWT) to separate the information related to the fractures from other features in the image. In the second stage, the aperture size (widths of the fractures) in different positions are estimated across scales using curvature analysis. In a third step, the fractures can be automatically extracted using a growing algorithm. Besides the measures of the fracture apertures in an image of Thingvellir in Iceland, we showed the correlation between the fractures of interest extracted automatically and the respective extracted manually were high (0.9) while only 51 % of then were extracted using just curvature analysis and growing algorithm (without NDWT).
AbstractList In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We show, in a first step, the capability of a translation invariant wavelet multiscale decomposition (NDWT) to separate the information related to the fractures from other features in the image. In the second stage, the aperture size (widths of the fractures) in different positions are estimated across scales using curvature analysis. In a third step, the fractures can be automatically extracted using a growing algorithm. Besides the measures of the fracture apertures in an image of Thingvellir in Iceland, we showed the correlation between the fractures of interest extracted automatically and the respective extracted manually were high (0.9) while only 51 % of then were extracted using just curvature analysis and growing algorithm (without NDWT).
Author Silveira, Luiz Gonzaga
Veronez, Mauricio R.
de Souza, Eniuce Menezes
Kupssinsku, Lucas
Rossa, Pedro
Marques, Ademir
Cazarin, Carol L.
Aires, Alysson S.
Horota, Rafael K.
Author_xml – sequence: 1
  givenname: Eniuce Menezes
  surname: de Souza
  fullname: de Souza, Eniuce Menezes
  organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil
– sequence: 2
  givenname: Ademir
  surname: Marques
  fullname: Marques, Ademir
  organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil
– sequence: 3
  givenname: Rafael K.
  surname: Horota
  fullname: Horota, Rafael K.
  organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil
– sequence: 4
  givenname: Lucas
  surname: Kupssinsku
  fullname: Kupssinsku, Lucas
  organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil
– sequence: 5
  givenname: Pedro
  surname: Rossa
  fullname: Rossa, Pedro
  organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil
– sequence: 6
  givenname: Alysson S.
  surname: Aires
  fullname: Aires, Alysson S.
  organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil
– sequence: 7
  givenname: Luiz Gonzaga
  surname: Silveira
  fullname: Silveira, Luiz Gonzaga
  organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil
– sequence: 8
  givenname: Mauricio R.
  surname: Veronez
  fullname: Veronez, Mauricio R.
  organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil
– sequence: 9
  givenname: Carol L.
  surname: Cazarin
  fullname: Cazarin, Carol L.
  organization: CENPES - PETROBRAS,Rio de Janeiro,Brazil
BookMark eNotkN1KAzEUhKMoaKtP4E1eYOtJsttkr6RU-wMVoat4WbLZkzbSTcomrfj2LtqrGfiYgZkBufLBIyGUwYgxKB-X88m6qkQJKh9x4DAqBc8LGF-QAZNcsbGQeXlJbjkrRCYBxA0ZxPjVG8UBbsl2Eb7p69Hs6Kc-4R4TfUYT2kOILrngqdGeLttDF05I0w57mtD8kWBpdeysNkhnnTbp2GGkztM1tiEhrdBH57d9WG8xPt2Ra6v3Ee_POiQfs5f36SJbvc2X08kqcxxEyqzkBbBcWglGKTPmAmTOG1OLfkyjuVZSl2hUU2BtlK4bgWVtBSssSJUjF0Py8N_rEHFz6Fyru5_N-RTxCwLOWhs
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS39084.2020.9324506
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 1728163749
9781728163741
EISSN 2153-7003
EndPage 2622
ExternalDocumentID 9324506
Genre orig-research
GrantInformation_xml – fundername: PETROBRAS
  funderid: 10.13039/501100004225
– fundername: ANP
  grantid: 4600556376
  funderid: 10.13039/501100006487
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-f7250147f70c88c6230742dcb3728da2a87a9ec8d5ebc8abd3e9bf315f0784e23
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:50 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-f7250147f70c88c6230742dcb3728da2a87a9ec8d5ebc8abd3e9bf315f0784e23
PageCount 4
ParticipantIDs ieee_primary_9324506
PublicationCentury 2000
PublicationDate 2020-Sept.-26
PublicationDateYYYYMMDD 2020-09-26
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.-26
  day: 26
PublicationDecade 2020
PublicationTitle IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
PublicationTitleAbbrev IGARSS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.7910548
Snippet In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We...
SourceID ieee
SourceType Publisher
StartPage 2619
SubjectTerms Apertures
Discrete wavelet transforms
Extraterrestrial measurements
Feature extraction
fissures
Geologic measurements
Image reconstruction
lineaments
NDWT
non-decimated wavelet transform
Time-frequency analysis
Title How Much Wavelet Decomposition can Improve the Detection of Surface Fractures in Remote Sensing Images?
URI https://ieeexplore.ieee.org/document/9324506
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sQfDkoxXf7MGjadPNJtmcROzLgyKNoreyj9naSyJtgvjvnU1iRfDiLWyYLMyQncd-Mx8hlwOtJP5oylMyMh4HEXoySYxnjORSWCE4r0hs0_jhVQxHbkzO1aYXBgAq8Bn03GN1l29yXbpSWR9jDR66-dqtOBF1r9b3qRugJ_O_kTp-0r-b3MzSFBN64QonzO81sr9IVCofMt793-57pPvTjEcfN25mn2xBdkC2JxUj72eHLKb5B70v9Rt9kY5EoqBDcDjxBoxFUXW0rhwAxWAP3xYV-iqjuaVpubISvz92vVIlZt50mdEZoPmApg7ani1QGI-c9XWXPI9HT7dTr2FP8JbMDwrPxszdGcY29rUQOnKIb86MVkHMhJFMilgmoIUJQWkhlQkgUTYYhBajBg4sOCTtLM_giNAAc4pYJBEKo-00w6wZFEYWIrJMaS6PScepa_5eD8iYN5o6-Xv5lOw4i9RArTPSLlYlnJPW2pQXlUm_AMZSosg
link.rule.ids 310,311,782,786,791,792,798,23939,23940,25149,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60InryUcW3e_BoarrZZDcnEfvEtkhT0VvZx6T2kkrbIP57Z9OHCF68hQ2ThRmy89hv5iPkpmq0wh9Ne1pF1uMgQ0_FsfWsVVzJVErOCxLbRPTeZK3uxuTcrnthAKAAn0HFPRZ3-XZiclcqu8NYg4duvvZWyEUkFt1aq3M3QF_mr7A6fnzXbj70kwRTeulKJ8yvLKV_0agUXqSx97_998nRTzsefV47mgOyAdkh2W4WnLxfZTJqTT5pNzfv9FU5Gok5rYFDii_hWBSVRxe1A6AY7uHbeYG_yugkpUk-TRV-v-G6pXLMvek4o31AAwJNHLg9G6EwHjqz-yPy0qgPHlvekj_BGzM_mHupYO7WUKTCN1KayGG-ObNGB4JJq5iSQsVgpA1BG6m0DSDWaVANU4wbOLDgmJSySQYnhAaYVQgZRyiM1jMM82bQGFvIKGXacHVKyk5dw4_FiIzhUlNnfy9fk53WoNsZdtq9p3Oy66zjIBgsuiCl-TSHS7I5s_lVYd5vh86mIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IGARSS+2020+-+2020+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=How+Much+Wavelet+Decomposition+can+Improve+the+Detection+of+Surface+Fractures+in+Remote+Sensing+Images%3F&rft.au=de+Souza%2C+Eniuce+Menezes&rft.au=Marques%2C+Ademir&rft.au=Horota%2C+Rafael+K.&rft.au=Kupssinsku%2C+Lucas&rft.date=2020-09-26&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=2619&rft.epage=2622&rft_id=info:doi/10.1109%2FIGARSS39084.2020.9324506&rft.externalDocID=9324506