How Much Wavelet Decomposition can Improve the Detection of Surface Fractures in Remote Sensing Images?
In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We show, in a first step, the capability of a translation invariant wavelet multiscale decomposition (NDWT) to separate the information related...
Saved in:
Published in: | IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium pp. 2619 - 2622 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
26-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We show, in a first step, the capability of a translation invariant wavelet multiscale decomposition (NDWT) to separate the information related to the fractures from other features in the image. In the second stage, the aperture size (widths of the fractures) in different positions are estimated across scales using curvature analysis. In a third step, the fractures can be automatically extracted using a growing algorithm. Besides the measures of the fracture apertures in an image of Thingvellir in Iceland, we showed the correlation between the fractures of interest extracted automatically and the respective extracted manually were high (0.9) while only 51 % of then were extracted using just curvature analysis and growing algorithm (without NDWT). |
---|---|
AbstractList | In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We show, in a first step, the capability of a translation invariant wavelet multiscale decomposition (NDWT) to separate the information related to the fractures from other features in the image. In the second stage, the aperture size (widths of the fractures) in different positions are estimated across scales using curvature analysis. In a third step, the fractures can be automatically extracted using a growing algorithm. Besides the measures of the fracture apertures in an image of Thingvellir in Iceland, we showed the correlation between the fractures of interest extracted automatically and the respective extracted manually were high (0.9) while only 51 % of then were extracted using just curvature analysis and growing algorithm (without NDWT). |
Author | Silveira, Luiz Gonzaga Veronez, Mauricio R. de Souza, Eniuce Menezes Kupssinsku, Lucas Rossa, Pedro Marques, Ademir Cazarin, Carol L. Aires, Alysson S. Horota, Rafael K. |
Author_xml | – sequence: 1 givenname: Eniuce Menezes surname: de Souza fullname: de Souza, Eniuce Menezes organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil – sequence: 2 givenname: Ademir surname: Marques fullname: Marques, Ademir organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil – sequence: 3 givenname: Rafael K. surname: Horota fullname: Horota, Rafael K. organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil – sequence: 4 givenname: Lucas surname: Kupssinsku fullname: Kupssinsku, Lucas organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil – sequence: 5 givenname: Pedro surname: Rossa fullname: Rossa, Pedro organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil – sequence: 6 givenname: Alysson S. surname: Aires fullname: Aires, Alysson S. organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil – sequence: 7 givenname: Luiz Gonzaga surname: Silveira fullname: Silveira, Luiz Gonzaga organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil – sequence: 8 givenname: Mauricio R. surname: Veronez fullname: Veronez, Mauricio R. organization: Vizlab, X-Reality & GeoInformatics Lab UNISINOS University,Rio Grande do Sul,Brazil – sequence: 9 givenname: Carol L. surname: Cazarin fullname: Cazarin, Carol L. organization: CENPES - PETROBRAS,Rio de Janeiro,Brazil |
BookMark | eNotkN1KAzEUhKMoaKtP4E1eYOtJsttkr6RU-wMVoat4WbLZkzbSTcomrfj2LtqrGfiYgZkBufLBIyGUwYgxKB-X88m6qkQJKh9x4DAqBc8LGF-QAZNcsbGQeXlJbjkrRCYBxA0ZxPjVG8UBbsl2Eb7p69Hs6Kc-4R4TfUYT2kOILrngqdGeLttDF05I0w57mtD8kWBpdeysNkhnnTbp2GGkztM1tiEhrdBH57d9WG8xPt2Ra6v3Ee_POiQfs5f36SJbvc2X08kqcxxEyqzkBbBcWglGKTPmAmTOG1OLfkyjuVZSl2hUU2BtlK4bgWVtBSssSJUjF0Py8N_rEHFz6Fyru5_N-RTxCwLOWhs |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS39084.2020.9324506 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 1728163749 9781728163741 |
EISSN | 2153-7003 |
EndPage | 2622 |
ExternalDocumentID | 9324506 |
Genre | orig-research |
GrantInformation_xml | – fundername: PETROBRAS funderid: 10.13039/501100004225 – fundername: ANP grantid: 4600556376 funderid: 10.13039/501100006487 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-f7250147f70c88c6230742dcb3728da2a87a9ec8d5ebc8abd3e9bf315f0784e23 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:26:50 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-f7250147f70c88c6230742dcb3728da2a87a9ec8d5ebc8abd3e9bf315f0784e23 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9324506 |
PublicationCentury | 2000 |
PublicationDate | 2020-Sept.-26 |
PublicationDateYYYYMMDD | 2020-09-26 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-Sept.-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.7910548 |
Snippet | In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2619 |
SubjectTerms | Apertures Discrete wavelet transforms Extraterrestrial measurements Feature extraction fissures Geologic measurements Image reconstruction lineaments NDWT non-decimated wavelet transform Time-frequency analysis |
Title | How Much Wavelet Decomposition can Improve the Detection of Surface Fractures in Remote Sensing Images? |
URI | https://ieeexplore.ieee.org/document/9324506 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sQfDkoxXf7MGjadPNJtmcROzLgyKNoreyj9naSyJtgvjvnU1iRfDiLWyYLMyQncd-Mx8hlwOtJP5oylMyMh4HEXoySYxnjORSWCE4r0hs0_jhVQxHbkzO1aYXBgAq8Bn03GN1l29yXbpSWR9jDR66-dqtOBF1r9b3qRugJ_O_kTp-0r-b3MzSFBN64QonzO81sr9IVCofMt793-57pPvTjEcfN25mn2xBdkC2JxUj72eHLKb5B70v9Rt9kY5EoqBDcDjxBoxFUXW0rhwAxWAP3xYV-iqjuaVpubISvz92vVIlZt50mdEZoPmApg7ani1QGI-c9XWXPI9HT7dTr2FP8JbMDwrPxszdGcY29rUQOnKIb86MVkHMhJFMilgmoIUJQWkhlQkgUTYYhBajBg4sOCTtLM_giNAAc4pYJBEKo-00w6wZFEYWIrJMaS6PScepa_5eD8iYN5o6-Xv5lOw4i9RArTPSLlYlnJPW2pQXlUm_AMZSosg |
link.rule.ids | 310,311,782,786,791,792,798,23939,23940,25149,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60InryUcW3e_BoarrZZDcnEfvEtkhT0VvZx6T2kkrbIP57Z9OHCF68hQ2ThRmy89hv5iPkpmq0wh9Ne1pF1uMgQ0_FsfWsVVzJVErOCxLbRPTeZK3uxuTcrnthAKAAn0HFPRZ3-XZiclcqu8NYg4duvvZWyEUkFt1aq3M3QF_mr7A6fnzXbj70kwRTeulKJ8yvLKV_0agUXqSx97_998nRTzsefV47mgOyAdkh2W4WnLxfZTJqTT5pNzfv9FU5Gok5rYFDii_hWBSVRxe1A6AY7uHbeYG_yugkpUk-TRV-v-G6pXLMvek4o31AAwJNHLg9G6EwHjqz-yPy0qgPHlvekj_BGzM_mHupYO7WUKTCN1KayGG-ObNGB4JJq5iSQsVgpA1BG6m0DSDWaVANU4wbOLDgmJSySQYnhAaYVQgZRyiM1jMM82bQGFvIKGXacHVKyk5dw4_FiIzhUlNnfy9fk53WoNsZdtq9p3Oy66zjIBgsuiCl-TSHS7I5s_lVYd5vh86mIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IGARSS+2020+-+2020+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=How+Much+Wavelet+Decomposition+can+Improve+the+Detection+of+Surface+Fractures+in+Remote+Sensing+Images%3F&rft.au=de+Souza%2C+Eniuce+Menezes&rft.au=Marques%2C+Ademir&rft.au=Horota%2C+Rafael+K.&rft.au=Kupssinsku%2C+Lucas&rft.date=2020-09-26&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=2619&rft.epage=2622&rft_id=info:doi/10.1109%2FIGARSS39084.2020.9324506&rft.externalDocID=9324506 |