ECO: Edge-Cloud Optimization of 5G applications
Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynam...
Saved in:
Published in: | 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid) pp. 649 - 659 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-05-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynamic runtime that enables such applications to make effective use of a 5G network, computing at the edge of this network, and resources in the centralized cloud, at all times. Our runtime continuously monitors the interaction among the microservices, estimates the data produced and exchanged among the microservices, and uses a novel graph min-cut algorithm to dynamically map the microservices to the edge or the cloud to satisfy application-specific response times. Our runtime also handles temporary network partitions, and maintains data consistency across the distributed fabric by using microservice proxies to reduce WAN bandwidth by an order of magnitude, all in an application-specific manner by leveraging knowledge about the application's functions, latency-critical pipelines and intermediate data. We illustrate the use of our runtime by successfully mapping two complex, representative real-world video analytics applications to the AWS/Verizon Wavelength edge-cloud architecture, and improving application response times by 2x when compared with a static edge-cloud implementation. |
---|---|
AbstractList | Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynamic runtime that enables such applications to make effective use of a 5G network, computing at the edge of this network, and resources in the centralized cloud, at all times. Our runtime continuously monitors the interaction among the microservices, estimates the data produced and exchanged among the microservices, and uses a novel graph min-cut algorithm to dynamically map the microservices to the edge or the cloud to satisfy application-specific response times. Our runtime also handles temporary network partitions, and maintains data consistency across the distributed fabric by using microservice proxies to reduce WAN bandwidth by an order of magnitude, all in an application-specific manner by leveraging knowledge about the application's functions, latency-critical pipelines and intermediate data. We illustrate the use of our runtime by successfully mapping two complex, representative real-world video analytics applications to the AWS/Verizon Wavelength edge-cloud architecture, and improving application response times by 2x when compared with a static edge-cloud implementation. |
Author | Rao, Kunal Coviello, Giuseppe Chakradhar, Srimat Hsiung, Wang-Pin |
Author_xml | – sequence: 1 givenname: Kunal surname: Rao fullname: Rao, Kunal email: kunal@nec-labs.com organization: NEC Laboratories America,Princeton,NJ – sequence: 2 givenname: Giuseppe surname: Coviello fullname: Coviello, Giuseppe email: giuseppe.coviello@nec-labs.com organization: NEC Laboratories America,Princeton,NJ – sequence: 3 givenname: Wang-Pin surname: Hsiung fullname: Hsiung, Wang-Pin email: whsiung@nec-labs.com organization: NEC Laboratories America,San Jose,CA – sequence: 4 givenname: Srimat surname: Chakradhar fullname: Chakradhar, Srimat email: chak@nec-labs.com organization: NEC Laboratories America,Princeton,NJ |
BookMark | eNotjMFKxDAURSPoQsf5AkHyA-28l6RN4k5C7QgD3eh6aJIXCXTa0qkL_XoHdXUPB869Y9fjNBJjjwglItidc-2SY3VBKAUILAFAmyu2tdqgFgZtZerqlu0a1z3xJn5Q4YbpM_JuXvMpf_drnkY-JV61vJ_nIYdfc75nN6kfzrT93w17f2ne3L44dO2rez4UWYBci2hBKuUlpjoKgSBtMEGRB0UGDBmtjE8BgyTQteq9r4NHf0mTEtEQyg17-PvNRHScl3zql6-jVdaqqpY_EplAnQ |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CCGrid51090.2021.00078 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728195865 1728195861 |
EndPage | 659 |
ExternalDocumentID | 9499456 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-d90344b31f6d221039c8c4eb04e808e8748bfc1c3e0764abb6cb1b203f42d8e13 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:01 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-d90344b31f6d221039c8c4eb04e808e8748bfc1c3e0764abb6cb1b203f42d8e13 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9499456 |
PublicationCentury | 2000 |
PublicationDate | 2021-May |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid) |
PublicationTitleAbbrev | CCGRID |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8939892 |
Snippet | Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 649 |
SubjectTerms | 5G applications 5G mobile communication AWS Wavelength Cloud computing Distributed databases edge-cloud optimization microservices Optimization Runtime Tactile Internet Time factors |
Title | ECO: Edge-Cloud Optimization of 5G applications |
URI | https://ieeexplore.ieee.org/document/9499456 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1sT55UWvGbHDy63SSbbbJe1217soIK3kqTmZWC7krt_n-T7VIVvHgLgRBmQniZzLw3ANfWo6blZRlJZZaRUkHyVvsRkn88CJNh0rZvmz3q-xdzVwSZnJsdF4aI2uIzGoVhm8vH2jXhqywOQioe8HvQ05nZcrU60q_gWZzn0_UK01Bp6OM-KUYt_v3qmtKCxuTgf9sdwvCbfccedrhyBHtUDSAu8vktK_CVovytbpDN_V1_70iUrC5ZOmU_k9FDeJ4UT_ks6podRCvJk02EWRDfs4koxyhlSNA64xRZrshwQ0YrY0snXEJcj9XS2rGzwvqlpZJoSCTH0K_qik6AcaOtytCHySl556eZQDIOpbYolV9-CoNg7OJjq2ex6Ow8-3v6HPaDN7dFfhfQ36wbuoTeJzZX7Ql8Ac8Lhrs |
link.rule.ids | 310,311,782,786,791,792,798,27936,54770 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22HvSk0orf5uDRbZNstsl6XbetWFvBCt5Kk5mVgnaldv-_ye5SFbx4C4EQZkJ4mcy8N4RcGYeahmVZIKSeB1J6yVvlRoDu8cB1DGHZvm34pMYv-jb1MjnXGy4MIpbFZ9jxwzKXD7kt_FdZ1wupOMBvkO1IKsUqtlZN--Us7ibJYLWAyNcaushP8E6JgL_6ppSw0d_734b7pP3Nv6OPG2Q5IFu4bJFumkxuaAqvGCRveQF04m77e02jpHlGowH9mY5uk-d-Ok2GQd3uIFgIFq4DiL38ngl51gMhfIrWaivRMImaadRKapNZbkNkqifnxvSs4cYtzaQAjTw8JM1lvsQjQplWRsbgAuUInfujmANqC0IZENItPyYtb-zso1K0mNV2nvw9fUl2htOH0Wx0N74_Jbves1XJ3xlprlcFnpPGJxQX5Wl8ARMCigY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FACM+21st+International+Symposium+on+Cluster%2C+Cloud+and+Internet+Computing+%28CCGrid%29&rft.atitle=ECO%3A+Edge-Cloud+Optimization+of+5G+applications&rft.au=Rao%2C+Kunal&rft.au=Coviello%2C+Giuseppe&rft.au=Hsiung%2C+Wang-Pin&rft.au=Chakradhar%2C+Srimat&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=649&rft.epage=659&rft_id=info:doi/10.1109%2FCCGrid51090.2021.00078&rft.externalDocID=9499456 |