ECO: Edge-Cloud Optimization of 5G applications

Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynam...

Full description

Saved in:
Bibliographic Details
Published in:2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid) pp. 649 - 659
Main Authors: Rao, Kunal, Coviello, Giuseppe, Hsiung, Wang-Pin, Chakradhar, Srimat
Format: Conference Proceeding
Language:English
Published: IEEE 01-05-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynamic runtime that enables such applications to make effective use of a 5G network, computing at the edge of this network, and resources in the centralized cloud, at all times. Our runtime continuously monitors the interaction among the microservices, estimates the data produced and exchanged among the microservices, and uses a novel graph min-cut algorithm to dynamically map the microservices to the edge or the cloud to satisfy application-specific response times. Our runtime also handles temporary network partitions, and maintains data consistency across the distributed fabric by using microservice proxies to reduce WAN bandwidth by an order of magnitude, all in an application-specific manner by leveraging knowledge about the application's functions, latency-critical pipelines and intermediate data. We illustrate the use of our runtime by successfully mapping two complex, representative real-world video analytics applications to the AWS/Verizon Wavelength edge-cloud architecture, and improving application response times by 2x when compared with a static edge-cloud implementation.
AbstractList Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynamic runtime that enables such applications to make effective use of a 5G network, computing at the edge of this network, and resources in the centralized cloud, at all times. Our runtime continuously monitors the interaction among the microservices, estimates the data produced and exchanged among the microservices, and uses a novel graph min-cut algorithm to dynamically map the microservices to the edge or the cloud to satisfy application-specific response times. Our runtime also handles temporary network partitions, and maintains data consistency across the distributed fabric by using microservice proxies to reduce WAN bandwidth by an order of magnitude, all in an application-specific manner by leveraging knowledge about the application's functions, latency-critical pipelines and intermediate data. We illustrate the use of our runtime by successfully mapping two complex, representative real-world video analytics applications to the AWS/Verizon Wavelength edge-cloud architecture, and improving application response times by 2x when compared with a static edge-cloud implementation.
Author Rao, Kunal
Coviello, Giuseppe
Chakradhar, Srimat
Hsiung, Wang-Pin
Author_xml – sequence: 1
  givenname: Kunal
  surname: Rao
  fullname: Rao, Kunal
  email: kunal@nec-labs.com
  organization: NEC Laboratories America,Princeton,NJ
– sequence: 2
  givenname: Giuseppe
  surname: Coviello
  fullname: Coviello, Giuseppe
  email: giuseppe.coviello@nec-labs.com
  organization: NEC Laboratories America,Princeton,NJ
– sequence: 3
  givenname: Wang-Pin
  surname: Hsiung
  fullname: Hsiung, Wang-Pin
  email: whsiung@nec-labs.com
  organization: NEC Laboratories America,San Jose,CA
– sequence: 4
  givenname: Srimat
  surname: Chakradhar
  fullname: Chakradhar, Srimat
  email: chak@nec-labs.com
  organization: NEC Laboratories America,Princeton,NJ
BookMark eNotjMFKxDAURSPoQsf5AkHyA-28l6RN4k5C7QgD3eh6aJIXCXTa0qkL_XoHdXUPB869Y9fjNBJjjwglItidc-2SY3VBKAUILAFAmyu2tdqgFgZtZerqlu0a1z3xJn5Q4YbpM_JuXvMpf_drnkY-JV61vJ_nIYdfc75nN6kfzrT93w17f2ne3L44dO2rez4UWYBci2hBKuUlpjoKgSBtMEGRB0UGDBmtjE8BgyTQteq9r4NHf0mTEtEQyg17-PvNRHScl3zql6-jVdaqqpY_EplAnQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCGrid51090.2021.00078
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728195865
1728195861
EndPage 659
ExternalDocumentID 9499456
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-d90344b31f6d221039c8c4eb04e808e8748bfc1c3e0764abb6cb1b203f42d8e13
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:01 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d90344b31f6d221039c8c4eb04e808e8748bfc1c3e0764abb6cb1b203f42d8e13
PageCount 11
ParticipantIDs ieee_primary_9499456
PublicationCentury 2000
PublicationDate 2021-May
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationTitle 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)
PublicationTitleAbbrev CCGRID
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8939892
Snippet Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for...
SourceID ieee
SourceType Publisher
StartPage 649
SubjectTerms 5G applications
5G mobile communication
AWS Wavelength
Cloud computing
Distributed databases
edge-cloud optimization
microservices
Optimization
Runtime
Tactile Internet
Time factors
Title ECO: Edge-Cloud Optimization of 5G applications
URI https://ieeexplore.ieee.org/document/9499456
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1sT55UWvGbHDy63SSbbbJe1217soIK3kqTmZWC7krt_n-T7VIVvHgLgRBmQniZzLw3ANfWo6blZRlJZZaRUkHyVvsRkn88CJNh0rZvmz3q-xdzVwSZnJsdF4aI2uIzGoVhm8vH2jXhqywOQioe8HvQ05nZcrU60q_gWZzn0_UK01Bp6OM-KUYt_v3qmtKCxuTgf9sdwvCbfccedrhyBHtUDSAu8vktK_CVovytbpDN_V1_70iUrC5ZOmU_k9FDeJ4UT_ks6podRCvJk02EWRDfs4koxyhlSNA64xRZrshwQ0YrY0snXEJcj9XS2rGzwvqlpZJoSCTH0K_qik6AcaOtytCHySl556eZQDIOpbYolV9-CoNg7OJjq2ex6Ow8-3v6HPaDN7dFfhfQ36wbuoTeJzZX7Ql8Ac8Lhrs
link.rule.ids 310,311,782,786,791,792,798,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22HvSk0orf5uDRbZNstsl6XbetWFvBCt5Kk5mVgnaldv-_ye5SFbx4C4EQZkJ4mcy8N4RcGYeahmVZIKSeB1J6yVvlRoDu8cB1DGHZvm34pMYv-jb1MjnXGy4MIpbFZ9jxwzKXD7kt_FdZ1wupOMBvkO1IKsUqtlZN--Us7ibJYLWAyNcaushP8E6JgL_6ppSw0d_734b7pP3Nv6OPG2Q5IFu4bJFumkxuaAqvGCRveQF04m77e02jpHlGowH9mY5uk-d-Ok2GQd3uIFgIFq4DiL38ngl51gMhfIrWaivRMImaadRKapNZbkNkqifnxvSs4cYtzaQAjTw8JM1lvsQjQplWRsbgAuUInfujmANqC0IZENItPyYtb-zso1K0mNV2nvw9fUl2htOH0Wx0N74_Jbves1XJ3xlprlcFnpPGJxQX5Wl8ARMCigY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FACM+21st+International+Symposium+on+Cluster%2C+Cloud+and+Internet+Computing+%28CCGrid%29&rft.atitle=ECO%3A+Edge-Cloud+Optimization+of+5G+applications&rft.au=Rao%2C+Kunal&rft.au=Coviello%2C+Giuseppe&rft.au=Hsiung%2C+Wang-Pin&rft.au=Chakradhar%2C+Srimat&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=649&rft.epage=659&rft_id=info:doi/10.1109%2FCCGrid51090.2021.00078&rft.externalDocID=9499456