A Digital Multiplier-less Neuromorphic Model for Learning a Context-Dependent Task
Highly efficient performance-resources trade-off of the biological brain is a motivation for research on neuromorphic computing. Neuromorphic engineers develop event-based spiking neural networks (SNNs) in hardware. Learning in SNNs is a challenging topic of current research. Reinforcement learning...
Saved in:
Published in: | 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) pp. 123 - 127 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-08-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Highly efficient performance-resources trade-off of the biological brain is a motivation for research on neuromorphic computing. Neuromorphic engineers develop event-based spiking neural networks (SNNs) in hardware. Learning in SNNs is a challenging topic of current research. Reinforcement learning (RL) is a particularly promising learning paradigm, important for developing autonomous agents. In this paper, we propose a digital multiplier-less hardware implementation of an SNN with RL capability. The network is able to learn stimulus-response associations in a context-dependent learning task. Validated in a robotic experiment, the proposed model replicates the behavior in animal experiments and the respective computational model. |
---|---|
AbstractList | Highly efficient performance-resources trade-off of the biological brain is a motivation for research on neuromorphic computing. Neuromorphic engineers develop event-based spiking neural networks (SNNs) in hardware. Learning in SNNs is a challenging topic of current research. Reinforcement learning (RL) is a particularly promising learning paradigm, important for developing autonomous agents. In this paper, we propose a digital multiplier-less hardware implementation of an SNN with RL capability. The network is able to learn stimulus-response associations in a context-dependent learning task. Validated in a robotic experiment, the proposed model replicates the behavior in animal experiments and the respective computational model. |
Author | Kreiser, Raphaela Maybodi, Babak Mazloom-Nezhad Sandamirskaya, Yulia Asgari, Hajar |
Author_xml | – sequence: 1 givenname: Hajar surname: Asgari fullname: Asgari, Hajar organization: Shahid Beheshti University Tehran,Department of Electrical Engineering,Iran – sequence: 2 givenname: Babak Mazloom-Nezhad surname: Maybodi fullname: Maybodi, Babak Mazloom-Nezhad organization: Shahid Beheshti University Tehran,Department of Electrical Engineering,Iran – sequence: 3 givenname: Raphaela surname: Kreiser fullname: Kreiser, Raphaela organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich,Switzerland – sequence: 4 givenname: Yulia surname: Sandamirskaya fullname: Sandamirskaya, Yulia organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich,Switzerland |
BookMark | eNotj0tOwzAUAI0EC1o4AQt8gQR_8rGXUQoUKQUJyrpykveKhWtHjivB7alEV7MbzSzIpQ8eCLnnLOec6YfmpW0-CqV0mQsmWK5ZLZXiF2TBa6F4oYWQ1-S9oSu7t8k4ujm6ZCdnIWYO5pm-wjGGQ4jTlx3oJozgKIZIOzDRW7-nhrbBJ_hJ2Qom8CP4RLdm_r4hV2jcDLdnLsnn0-O2XWfd2_OpqcusYDJlA7K6xkLXWolTGMhBiR5RjxoqVvWlhJJhibLHYlAImqGAsSplAbySYIRckrt_rwWA3RTtwcTf3XlT_gF_Dk3L |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/AICAS48895.2020.9073881 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728149223 9781728149226 |
EndPage | 127 |
ExternalDocumentID | 9073881 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-cf077f497982388e3c82bff9d9e606b53e50f5f3bf4c8fe90f2ed6534e163ea23 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:13:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-cf077f497982388e3c82bff9d9e606b53e50f5f3bf4c8fe90f2ed6534e163ea23 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9073881 |
PublicationCentury | 2000 |
PublicationDate | 2020-Aug. |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-Aug. |
PublicationDecade | 2020 |
PublicationTitle | 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) |
PublicationTitleAbbrev | AICAS |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7925763 |
Snippet | Highly efficient performance-resources trade-off of the biological brain is a motivation for research on neuromorphic computing. Neuromorphic engineers develop... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 123 |
SubjectTerms | context-dependent task Field programmable gate arrays Hardware Integrated circuit modeling Neuromorphic engineering Neuromorphics Neurons reinforcement learning spiking neural networks Synapses Task analysis |
Title | A Digital Multiplier-less Neuromorphic Model for Learning a Context-Dependent Task |
URI | https://ieeexplore.ieee.org/document/9073881 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uJ08qm_ibHDyaLW3SNjmO_WAeFHETvI0mfRnFuQ63_f--pGUiePESSiiUvJZ-70ve-z5C7oMmlCwKBjw1_pjRMpUKHBSkiEaRdEFndjrLnt_VaOxlch4OvTAAEIrPoOcvw1l-Udm93yrrI5ETyvdZtzKt6l6tpmQr4ro_eBwOZvg96gRpX8x7zd2_bFMCakxO_ve8U9L9ab-jLwdgOSNHsO6Q1wEdlUtv8UGf6iJABDS2wh8VDQIbnxVGrLTUm5utKKaitJFOXdKcBg0qpLijxvJ2R-f59qNL3ibj-XDKGkMEVsZc7Jh1PMuc1Lh6RFoFwqrYOKcLDchDTCIg4S5xwjhplQPNXQxFmggJmHVBHotz0l5Xa7ggNE8zTBRAREYYqbg0YJRnL5FNYgfGXJKOj8diU2teLJpQXP09fU2Ofcjrwrgb0t597eGWtLbF_i68pW-NnJQ1 |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aD3pSacVvc_DottlNskmOpR-02BaxFbyVTXZSSmsrtv3_JtmlInjxEpYQWJgNefM2M-8h9Bg0oVieR0BS7a8ZTSRT6gYJqUOjmNmgM9sbi9G7bHe8TM7TvhcGAELxGdT9Y7jLz9dm53-VNRyRo9L3WR9xJlJRdGuVRVsxUY1mv9Ucux2puCN-CamX638ZpwTc6J7-741nqPbTgIdf9tByjg5gVUWvTdyez7zJBx4WZYAO0qKlO6pwkNj4WLuYzQ329mZL7JJRXIqnznCGgwqVI7nt0vR2iyfZZlFDb93OpNWLSkuEaJ4Quo2MJUJYpoSSDmslUCMTba3KFTgmojkFTiy3VFtmpAVFbAJ5yikDl3dBltALVFmtV3CJcJYKlyoAjTXVTBKmQUvPX2LDEwtaX6Gqj8f0s1C9mJahuP57-gEd9ybDwXTQHz3foBMf_qJM7hZVtl87uEOHm3x3H77YN4qkl4Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+2nd+IEEE+International+Conference+on+Artificial+Intelligence+Circuits+and+Systems+%28AICAS%29&rft.atitle=A+Digital+Multiplier-less+Neuromorphic+Model+for+Learning+a+Context-Dependent+Task&rft.au=Asgari%2C+Hajar&rft.au=Maybodi%2C+Babak+Mazloom-Nezhad&rft.au=Kreiser%2C+Raphaela&rft.au=Sandamirskaya%2C+Yulia&rft.date=2020-08-01&rft.pub=IEEE&rft.spage=123&rft.epage=127&rft_id=info:doi/10.1109%2FAICAS48895.2020.9073881&rft.externalDocID=9073881 |