A Digital Multiplier-less Neuromorphic Model for Learning a Context-Dependent Task

Highly efficient performance-resources trade-off of the biological brain is a motivation for research on neuromorphic computing. Neuromorphic engineers develop event-based spiking neural networks (SNNs) in hardware. Learning in SNNs is a challenging topic of current research. Reinforcement learning...

Full description

Saved in:
Bibliographic Details
Published in:2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) pp. 123 - 127
Main Authors: Asgari, Hajar, Maybodi, Babak Mazloom-Nezhad, Kreiser, Raphaela, Sandamirskaya, Yulia
Format: Conference Proceeding
Language:English
Published: IEEE 01-08-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Highly efficient performance-resources trade-off of the biological brain is a motivation for research on neuromorphic computing. Neuromorphic engineers develop event-based spiking neural networks (SNNs) in hardware. Learning in SNNs is a challenging topic of current research. Reinforcement learning (RL) is a particularly promising learning paradigm, important for developing autonomous agents. In this paper, we propose a digital multiplier-less hardware implementation of an SNN with RL capability. The network is able to learn stimulus-response associations in a context-dependent learning task. Validated in a robotic experiment, the proposed model replicates the behavior in animal experiments and the respective computational model.
AbstractList Highly efficient performance-resources trade-off of the biological brain is a motivation for research on neuromorphic computing. Neuromorphic engineers develop event-based spiking neural networks (SNNs) in hardware. Learning in SNNs is a challenging topic of current research. Reinforcement learning (RL) is a particularly promising learning paradigm, important for developing autonomous agents. In this paper, we propose a digital multiplier-less hardware implementation of an SNN with RL capability. The network is able to learn stimulus-response associations in a context-dependent learning task. Validated in a robotic experiment, the proposed model replicates the behavior in animal experiments and the respective computational model.
Author Kreiser, Raphaela
Maybodi, Babak Mazloom-Nezhad
Sandamirskaya, Yulia
Asgari, Hajar
Author_xml – sequence: 1
  givenname: Hajar
  surname: Asgari
  fullname: Asgari, Hajar
  organization: Shahid Beheshti University Tehran,Department of Electrical Engineering,Iran
– sequence: 2
  givenname: Babak Mazloom-Nezhad
  surname: Maybodi
  fullname: Maybodi, Babak Mazloom-Nezhad
  organization: Shahid Beheshti University Tehran,Department of Electrical Engineering,Iran
– sequence: 3
  givenname: Raphaela
  surname: Kreiser
  fullname: Kreiser, Raphaela
  organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich,Switzerland
– sequence: 4
  givenname: Yulia
  surname: Sandamirskaya
  fullname: Sandamirskaya, Yulia
  organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich,Switzerland
BookMark eNotj0tOwzAUAI0EC1o4AQt8gQR_8rGXUQoUKQUJyrpykveKhWtHjivB7alEV7MbzSzIpQ8eCLnnLOec6YfmpW0-CqV0mQsmWK5ZLZXiF2TBa6F4oYWQ1-S9oSu7t8k4ujm6ZCdnIWYO5pm-wjGGQ4jTlx3oJozgKIZIOzDRW7-nhrbBJ_hJ2Qom8CP4RLdm_r4hV2jcDLdnLsnn0-O2XWfd2_OpqcusYDJlA7K6xkLXWolTGMhBiR5RjxoqVvWlhJJhibLHYlAImqGAsSplAbySYIRckrt_rwWA3RTtwcTf3XlT_gF_Dk3L
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AICAS48895.2020.9073881
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728149223
9781728149226
EndPage 127
ExternalDocumentID 9073881
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-cf077f497982388e3c82bff9d9e606b53e50f5f3bf4c8fe90f2ed6534e163ea23
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-cf077f497982388e3c82bff9d9e606b53e50f5f3bf4c8fe90f2ed6534e163ea23
PageCount 5
ParticipantIDs ieee_primary_9073881
PublicationCentury 2000
PublicationDate 2020-Aug.
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-Aug.
PublicationDecade 2020
PublicationTitle 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
PublicationTitleAbbrev AICAS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7925763
Snippet Highly efficient performance-resources trade-off of the biological brain is a motivation for research on neuromorphic computing. Neuromorphic engineers develop...
SourceID ieee
SourceType Publisher
StartPage 123
SubjectTerms context-dependent task
Field programmable gate arrays
Hardware
Integrated circuit modeling
Neuromorphic engineering
Neuromorphics
Neurons
reinforcement learning
spiking neural networks
Synapses
Task analysis
Title A Digital Multiplier-less Neuromorphic Model for Learning a Context-Dependent Task
URI https://ieeexplore.ieee.org/document/9073881
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uJ08qm_ibHDyaLW3SNjmO_WAeFHETvI0mfRnFuQ63_f--pGUiePESSiiUvJZ-70ve-z5C7oMmlCwKBjw1_pjRMpUKHBSkiEaRdEFndjrLnt_VaOxlch4OvTAAEIrPoOcvw1l-Udm93yrrI5ETyvdZtzKt6l6tpmQr4ro_eBwOZvg96gRpX8x7zd2_bFMCakxO_ve8U9L9ab-jLwdgOSNHsO6Q1wEdlUtv8UGf6iJABDS2wh8VDQIbnxVGrLTUm5utKKaitJFOXdKcBg0qpLijxvJ2R-f59qNL3ibj-XDKGkMEVsZc7Jh1PMuc1Lh6RFoFwqrYOKcLDchDTCIg4S5xwjhplQPNXQxFmggJmHVBHotz0l5Xa7ggNE8zTBRAREYYqbg0YJRnL5FNYgfGXJKOj8diU2teLJpQXP09fU2Ofcjrwrgb0t597eGWtLbF_i68pW-NnJQ1
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aD3pSacVvc_DottlNskmOpR-02BaxFbyVTXZSSmsrtv3_JtmlInjxEpYQWJgNefM2M-8h9Bg0oVieR0BS7a8ZTSRT6gYJqUOjmNmgM9sbi9G7bHe8TM7TvhcGAELxGdT9Y7jLz9dm53-VNRyRo9L3WR9xJlJRdGuVRVsxUY1mv9Ucux2puCN-CamX638ZpwTc6J7-741nqPbTgIdf9tByjg5gVUWvTdyez7zJBx4WZYAO0qKlO6pwkNj4WLuYzQ329mZL7JJRXIqnznCGgwqVI7nt0vR2iyfZZlFDb93OpNWLSkuEaJ4Quo2MJUJYpoSSDmslUCMTba3KFTgmojkFTiy3VFtmpAVFbAJ5yikDl3dBltALVFmtV3CJcJYKlyoAjTXVTBKmQUvPX2LDEwtaX6Gqj8f0s1C9mJahuP57-gEd9ybDwXTQHz3foBMf_qJM7hZVtl87uEOHm3x3H77YN4qkl4Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+2nd+IEEE+International+Conference+on+Artificial+Intelligence+Circuits+and+Systems+%28AICAS%29&rft.atitle=A+Digital+Multiplier-less+Neuromorphic+Model+for+Learning+a+Context-Dependent+Task&rft.au=Asgari%2C+Hajar&rft.au=Maybodi%2C+Babak+Mazloom-Nezhad&rft.au=Kreiser%2C+Raphaela&rft.au=Sandamirskaya%2C+Yulia&rft.date=2020-08-01&rft.pub=IEEE&rft.spage=123&rft.epage=127&rft_id=info:doi/10.1109%2FAICAS48895.2020.9073881&rft.externalDocID=9073881