Semantic Segmentation With Multi Scale Spatial Attention For Self Driving Cars
In this paper, we present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation. We used ResNet based feature extractor, dilated convolutional layers in down-sampling part, atrous convolutional layers in the upsampling part a...
Saved in:
Published in: | 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) pp. 2650 - 2656 |
---|---|
Main Authors: | , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-10-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper, we present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation. We used ResNet based feature extractor, dilated convolutional layers in down-sampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them. A new attention module is proposed to encode more contextual information and enhance the receptive field of the network. We present an in depth theoretical analysis of our network with training and optimization details. Our network was trained and tested on the Camvid dataset and Cityscapes dataset using mean accuracy per class and Intersection Over Union (IOU) as the evaluation metrics. Our model outperforms previous state of the art methods on semantic segmentation achieving mean IOU value of 74.12 while running at >100 FPS. |
---|---|
AbstractList | In this paper, we present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation. We used ResNet based feature extractor, dilated convolutional layers in down-sampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them. A new attention module is proposed to encode more contextual information and enhance the receptive field of the network. We present an in depth theoretical analysis of our network with training and optimization details. Our network was trained and tested on the Camvid dataset and Cityscapes dataset using mean accuracy per class and Intersection Over Union (IOU) as the evaluation metrics. Our model outperforms previous state of the art methods on semantic segmentation achieving mean IOU value of 74.12 while running at >100 FPS. |
Author | Sagar, Abhinav Soundrapandiyan, RajKumar |
Author_xml | – sequence: 1 givenname: Abhinav surname: Sagar fullname: Sagar, Abhinav email: abhinavsagar4@gmail.com organization: Vellore Institute of Technology,Vellore,Tamil Nadu,India – sequence: 2 givenname: RajKumar surname: Soundrapandiyan fullname: Soundrapandiyan, RajKumar email: rajkumar.s@vit.ac.in organization: Vellore Institute of Technology,Vellore,Tamil Nadu,India |
BookMark | eNotjMtOwzAQRQ0CiVL6BQjJP5Ay40ccL6tAoVKBRYAuq7HjFKM0rRJTib-nCFZncc89l-ys23WBsRuEKSLY20VZvq-0QgFTAQKnAMLaEzaxpsA81wrQojxlI6GMzKxV6oJNhuETADBHbSWM2HMVttSl6HkVNtvQJUpx1_FVTB_86atNkVee2sCr_XGgls9SOkq_ynzXHz9tw-_6eIjdhpfUD1fsvKF2CJN_jtnb_P61fMyWLw-LcrbMogCZMm9R1HVjfa2QvEMyhVKI1pIo0MmiyclrdKFwJkDttFeGHCkvXEOFtkaO2fVfN4YQ1vs-bqn_XtscjNZC_gBDhlIo |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCVW54120.2021.00299 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781665401913 1665401915 |
EISSN | 2473-9944 |
EndPage | 2656 |
ExternalDocumentID | 9607552 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i203t-c912ddf9cd41acb1a78441199a281b38f6ac51be8b7e0db5c47aba4c2bfa85973 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:20 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-c912ddf9cd41acb1a78441199a281b38f6ac51be8b7e0db5c47aba4c2bfa85973 |
PageCount | 7 |
ParticipantIDs | ieee_primary_9607552 |
PublicationCentury | 2000 |
PublicationDate | 2021-Oct. |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct. |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) |
PublicationTitleAbbrev | ICCVW |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001615930 |
Score | 2.3275702 |
Snippet | In this paper, we present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation. We... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2650 |
SubjectTerms | Computer vision Conferences Image segmentation Measurement Neural networks Semantics Training |
Title | Semantic Segmentation With Multi Scale Spatial Attention For Self Driving Cars |
URI | https://ieeexplore.ieee.org/document/9607552 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoJ6YCLeJbHhgJtZM4tkeUtipLhVSgbJU_IRKkqE3_P-ckahlY2KLIUaTnJPfe5d4dQreCcZMaEDlpJkiUAqONpGcZqBQHWkxwbmXwO0_nfPYmRuPQJudu54VxztXFZ-4-HNb_8u3KbEOqbAhsmzMGH9wOl6Lxau3zKRCaZUJakw4lcviY568LltKYgAyMaUidhA6vv4ao1DFk0vvf3Y_QYG_Gw0-7MHOMDlx5gnote8Ttu7npo9ncfQFMhcFz9_7VWopKvCiqD1zbbGEtRAMchhDDQ4cfqqopdcST1Rqu-fR4tC5CfgHnoHYH6GUyfs6nUTstISpiklSRkTS21ktjU6qMpooLoDpUShUDNU2Ez5RhVDuhuSNWM5NypRXsk_ZKgKxITlG3XJXuDGFvACqqNKwA-ayIFpmLrQ_N66yjNjtH_QDP8rtpiLFskbn4-_QlOgz4NxVwV6hbrbfuGnU2dntTb-EPLKecHw |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0oHvSECsZv9-DRSrftdnePpkggIjEBxRvZr2oTKQbK_3e2bcCDF2_NZptNZtrOe9N5Mwjdcsp0pIHkRDH3vQgQrSdSGgNLscDFOGNGOL1zf8xG77z76Nrk3G20MNbasvjM3rvL8l--Wei1S5V1AG0zSuGDu0cjFrNKrbXNqEBwFqFfy3SILzqDJHmb0ogEPhDBgLjkievx-muMShlFes3_nX-I2ls5Hn7ZBJojtGPzY9Ss8SOu385VC43Gdg6GyjQe2495LSrK8TQrPnEptIW9EA-wG0MMjx1-KIqq2BH3Fku45yvF3WXmMgw4Ab7bRq-9x0nS9-p5CV4W-GHhaUECY1KhTUSkVkQyDmCHCCEDAKchT2OpKVGWK2Z9o6iOmFQSPKVSyYFYhCeokS9ye4pwqsFURCrYAQRa-orHNjCpa19nLDHxGWo588y-q5YYs9oy538v36D9_uR5OBsORk8X6MD5oqqHu0SNYrm2V2h3ZdbXpTt_AJQWn3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FCVF+International+Conference+on+Computer+Vision+Workshops+%28ICCVW%29&rft.atitle=Semantic+Segmentation+With+Multi+Scale+Spatial+Attention+For+Self+Driving+Cars&rft.au=Sagar%2C+Abhinav&rft.au=Soundrapandiyan%2C+RajKumar&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2473-9944&rft.spage=2650&rft.epage=2656&rft_id=info:doi/10.1109%2FICCVW54120.2021.00299&rft.externalDocID=9607552 |