Semantic Segmentation With Multi Scale Spatial Attention For Self Driving Cars

In this paper, we present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation. We used ResNet based feature extractor, dilated convolutional layers in down-sampling part, atrous convolutional layers in the upsampling part a...

Full description

Saved in:
Bibliographic Details
Published in:2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) pp. 2650 - 2656
Main Authors: Sagar, Abhinav, Soundrapandiyan, RajKumar
Format: Conference Proceeding
Language:English
Published: IEEE 01-10-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation. We used ResNet based feature extractor, dilated convolutional layers in down-sampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them. A new attention module is proposed to encode more contextual information and enhance the receptive field of the network. We present an in depth theoretical analysis of our network with training and optimization details. Our network was trained and tested on the Camvid dataset and Cityscapes dataset using mean accuracy per class and Intersection Over Union (IOU) as the evaluation metrics. Our model outperforms previous state of the art methods on semantic segmentation achieving mean IOU value of 74.12 while running at >100 FPS.
AbstractList In this paper, we present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation. We used ResNet based feature extractor, dilated convolutional layers in down-sampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them. A new attention module is proposed to encode more contextual information and enhance the receptive field of the network. We present an in depth theoretical analysis of our network with training and optimization details. Our network was trained and tested on the Camvid dataset and Cityscapes dataset using mean accuracy per class and Intersection Over Union (IOU) as the evaluation metrics. Our model outperforms previous state of the art methods on semantic segmentation achieving mean IOU value of 74.12 while running at >100 FPS.
Author Sagar, Abhinav
Soundrapandiyan, RajKumar
Author_xml – sequence: 1
  givenname: Abhinav
  surname: Sagar
  fullname: Sagar, Abhinav
  email: abhinavsagar4@gmail.com
  organization: Vellore Institute of Technology,Vellore,Tamil Nadu,India
– sequence: 2
  givenname: RajKumar
  surname: Soundrapandiyan
  fullname: Soundrapandiyan, RajKumar
  email: rajkumar.s@vit.ac.in
  organization: Vellore Institute of Technology,Vellore,Tamil Nadu,India
BookMark eNotjMtOwzAQRQ0CiVL6BQjJP5Ay40ccL6tAoVKBRYAuq7HjFKM0rRJTib-nCFZncc89l-ys23WBsRuEKSLY20VZvq-0QgFTAQKnAMLaEzaxpsA81wrQojxlI6GMzKxV6oJNhuETADBHbSWM2HMVttSl6HkVNtvQJUpx1_FVTB_86atNkVee2sCr_XGgls9SOkq_ynzXHz9tw-_6eIjdhpfUD1fsvKF2CJN_jtnb_P61fMyWLw-LcrbMogCZMm9R1HVjfa2QvEMyhVKI1pIo0MmiyclrdKFwJkDttFeGHCkvXEOFtkaO2fVfN4YQ1vs-bqn_XtscjNZC_gBDhlIo
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCVW54120.2021.00299
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665401913
1665401915
EISSN 2473-9944
EndPage 2656
ExternalDocumentID 9607552
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-c912ddf9cd41acb1a78441199a281b38f6ac51be8b7e0db5c47aba4c2bfa85973
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:20 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c912ddf9cd41acb1a78441199a281b38f6ac51be8b7e0db5c47aba4c2bfa85973
PageCount 7
ParticipantIDs ieee_primary_9607552
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
PublicationTitleAbbrev ICCVW
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615930
Score 2.3275702
Snippet In this paper, we present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation. We...
SourceID ieee
SourceType Publisher
StartPage 2650
SubjectTerms Computer vision
Conferences
Image segmentation
Measurement
Neural networks
Semantics
Training
Title Semantic Segmentation With Multi Scale Spatial Attention For Self Driving Cars
URI https://ieeexplore.ieee.org/document/9607552
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoJ6YCLeJbHhgJtZM4tkeUtipLhVSgbJU_IRKkqE3_P-ckahlY2KLIUaTnJPfe5d4dQreCcZMaEDlpJkiUAqONpGcZqBQHWkxwbmXwO0_nfPYmRuPQJudu54VxztXFZ-4-HNb_8u3KbEOqbAhsmzMGH9wOl6Lxau3zKRCaZUJakw4lcviY568LltKYgAyMaUidhA6vv4ao1DFk0vvf3Y_QYG_Gw0-7MHOMDlx5gnote8Ttu7npo9ncfQFMhcFz9_7VWopKvCiqD1zbbGEtRAMchhDDQ4cfqqopdcST1Rqu-fR4tC5CfgHnoHYH6GUyfs6nUTstISpiklSRkTS21ktjU6qMpooLoDpUShUDNU2Ez5RhVDuhuSNWM5NypRXsk_ZKgKxITlG3XJXuDGFvACqqNKwA-ayIFpmLrQ_N66yjNjtH_QDP8rtpiLFskbn4-_QlOgz4NxVwV6hbrbfuGnU2dntTb-EPLKecHw
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0oHvSECsZv9-DRSrftdnePpkggIjEBxRvZr2oTKQbK_3e2bcCDF2_NZptNZtrOe9N5Mwjdcsp0pIHkRDH3vQgQrSdSGgNLscDFOGNGOL1zf8xG77z76Nrk3G20MNbasvjM3rvL8l--Wei1S5V1AG0zSuGDu0cjFrNKrbXNqEBwFqFfy3SILzqDJHmb0ogEPhDBgLjkievx-muMShlFes3_nX-I2ls5Hn7ZBJojtGPzY9Ss8SOu385VC43Gdg6GyjQe2495LSrK8TQrPnEptIW9EA-wG0MMjx1-KIqq2BH3Fku45yvF3WXmMgw4Ab7bRq-9x0nS9-p5CV4W-GHhaUECY1KhTUSkVkQyDmCHCCEDAKchT2OpKVGWK2Z9o6iOmFQSPKVSyYFYhCeokS9ye4pwqsFURCrYAQRa-orHNjCpa19nLDHxGWo588y-q5YYs9oy538v36D9_uR5OBsORk8X6MD5oqqHu0SNYrm2V2h3ZdbXpTt_AJQWn3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FCVF+International+Conference+on+Computer+Vision+Workshops+%28ICCVW%29&rft.atitle=Semantic+Segmentation+With+Multi+Scale+Spatial+Attention+For+Self+Driving+Cars&rft.au=Sagar%2C+Abhinav&rft.au=Soundrapandiyan%2C+RajKumar&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2473-9944&rft.spage=2650&rft.epage=2656&rft_id=info:doi/10.1109%2FICCVW54120.2021.00299&rft.externalDocID=9607552