Combined Genetic Programming and Neural Network Approaches to Electronic Modeling

An approach combining genetic programming (GP), neural network and electrical knowledge equations is presented for electronic device modeling. The proposed model includes a GP-generated symbolic function accurately representing device behavior within the training range, and a knowledge equation prov...

Full description

Saved in:
Bibliographic Details
Published in:2019 International Conference on Computational Science and Computational Intelligence (CSCI) pp. 1533 - 1536
Main Authors: Zhang, Louis, Zhang, Qijun
Format: Conference Proceeding
Language:English
Published: IEEE 01-12-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An approach combining genetic programming (GP), neural network and electrical knowledge equations is presented for electronic device modeling. The proposed model includes a GP-generated symbolic function accurately representing device behavior within the training range, and a knowledge equation providing reliable tendencies of electronic behavior outside the training range. A correctional neural network is trained to align the knowledge equations with the GP-generated symbolic functions at the boundary of training data. The proposed method is more robust than the GP-generated symbolic functions alone because of improved extrapolation ability, and more accurate than the knowledge equations alone because of the genetic program's ability to learn non-ideal relationships inherent in the practical data. The method is demonstrated by applying it to a practical high-frequency, high-power transistor called a HEMT (High-Electron Mobility Transistor) used in wireless transmitters.
AbstractList An approach combining genetic programming (GP), neural network and electrical knowledge equations is presented for electronic device modeling. The proposed model includes a GP-generated symbolic function accurately representing device behavior within the training range, and a knowledge equation providing reliable tendencies of electronic behavior outside the training range. A correctional neural network is trained to align the knowledge equations with the GP-generated symbolic functions at the boundary of training data. The proposed method is more robust than the GP-generated symbolic functions alone because of improved extrapolation ability, and more accurate than the knowledge equations alone because of the genetic program's ability to learn non-ideal relationships inherent in the practical data. The method is demonstrated by applying it to a practical high-frequency, high-power transistor called a HEMT (High-Electron Mobility Transistor) used in wireless transmitters.
Author Zhang, Louis
Zhang, Qijun
Author_xml – sequence: 1
  givenname: Louis
  surname: Zhang
  fullname: Zhang, Louis
  organization: Carleton University, Canada
– sequence: 2
  givenname: Qijun
  surname: Zhang
  fullname: Zhang, Qijun
  organization: Carleton University, Canada
BookMark eNotzEtOwzAUhWEjwYAWVgADbyDB14_YHlZRKZXKS3Re2c5NiUjsyA1C7J5IZfRNzn8W5DKmiITcAysBmH2oP-qttEKzkjOwJWPcyAuyAM0NKGWkuCbvdRp8F7GhG4w4dYG-5XTMbhi6eKQuNvQFv7PrZ6aflL_oahxzcuETT3RKdN1jmHKKc_ecGuzn6IZcta4_4e2_S7J_XO_rp2L3utnWq13RcSamwprKC4dQeaYqX_mAjdTaOYWOQyuEaoMXFqSRGASAQuCNd5zPWjMPluTufNsh4mHM3eDy78EyDRK0-ANXjUyX
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSCI49370.2019.00284
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728155843
9781728155845
EndPage 1536
ExternalDocumentID 9071417
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-986b3ae16b056b6bced477aa5ea21f335fcb391484ec3115e12dba22e12981f3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:58 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-986b3ae16b056b6bced477aa5ea21f335fcb391484ec3115e12dba22e12981f3
PageCount 4
ParticipantIDs ieee_primary_9071417
PublicationCentury 2000
PublicationDate 2019-Dec
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec
PublicationDecade 2010
PublicationTitle 2019 International Conference on Computational Science and Computational Intelligence (CSCI)
PublicationTitleAbbrev CSCI
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7544279
Snippet An approach combining genetic programming (GP), neural network and electrical knowledge equations is presented for electronic device modeling. The proposed...
SourceID ieee
SourceType Publisher
StartPage 1533
SubjectTerms Computational intelligence
Electronic modeling
Genetic programming
Knowledge-based model
Neural network
Scientific computing
Title Combined Genetic Programming and Neural Network Approaches to Electronic Modeling
URI https://ieeexplore.ieee.org/document/9071417
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sT55UWvHNHjwam-xu9nGU2lIvorQHb2UfExA0Fdv-_84koSJ48bQhDARm2J2dyfd9w9gt5pQYKhMyoa2k1o3Cc9DZTHplkvBB6Eit7NncPL_ZxwnJ5NztuTAA0IDP4J4em3_5aRW31CobOWLbFKbHesbZlqvVseGK3I3G8_GTwmybE2DLNQhJ9WtmSpMypkf_-9gxG_5w7_jLPqucsAOoB-wVty2WsJA4yURjrMmEcFWfaMN9nTiJbPgPXBpUN3_opMJhzTcrPtnPuuE0-4wY6EO2mE4W41nWDUPI3kUuN5mzOkgPhQ54ZQk6REjKGO9L8KKopCyrGKTD4kZBJAUdKEQKXghcnUWDU9avVzWcMW5dJEWeSoMOKkHpSwlVbqLKVaqwvjhnA_LG8quVu1h2jrj4-_UlOyR3twiPK9bffG_hmvXWaXvTBGgHW9WTOw
link.rule.ids 310,311,782,786,791,792,798,27935,54769
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1sPehJpRW_zcGja3eTbLI5Sm1psRalPXgr-ZgFQbdi2_9vZlsqghdPWZaBhRmSycy-9wbgJuYU70rtEq4KQa0bGc9BUyTCSh24dVx5amUPJnr8Wjz0SCbndsuFQcQafIZ39Fj_yw9zv6JWWccQ2ybTDdjNpVZmzdba8OGy1HS6k-5QxnybEmTL1BhJ-WtqSp00-gf_-9whtH_Yd-x5m1eOYAerFrzEjRuLWAyMhKJjtMmEkFUf0YbZKjCS2bDvcalx3ex-IxaOC7acs9522g2j6WfEQW_DtN-bdgfJZhxC8sZTsUxMoZywmCkXLy1OOY9Bam1tjpZnpRB56Z0wsbyR6ElDBzMenOU8rqaIBsfQrOYVngArjCdNnlKhcjJgbnOBZaq9TGUoY4VxCi3yxuxzLXgx2zji7O_X17A3mD6NZqPh-PEc9sn1a7zHBTSXXyu8hMYirK7qYH0DTqiWjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+International+Conference+on+Computational+Science+and+Computational+Intelligence+%28CSCI%29&rft.atitle=Combined+Genetic+Programming+and+Neural+Network+Approaches+to+Electronic+Modeling&rft.au=Zhang%2C+Louis&rft.au=Zhang%2C+Qijun&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=1533&rft.epage=1536&rft_id=info:doi/10.1109%2FCSCI49370.2019.00284&rft.externalDocID=9071417