Stopping Resistance Drift in Phase Change Memory Cells

Phase change memory (PCM) is a high speed, high endurance, high density non-volatile memory technology that utilizes chalcogenide materials such as Ge 2 Sb 2 Te 5 (GST) that can be electrically cycled between highly resistive amorphous and low resistance crystalline phases. The resistance of the amo...

Full description

Saved in:
Bibliographic Details
Published in:2020 Device Research Conference (DRC) pp. 1 - 2
Main Authors: Khan, Raihan S., Hasan Talukder, ABM, Dirisaglik, Faruk, Gokirmak, Ali, Silva, Helena
Format: Conference Proceeding
Language:English
Published: IEEE 01-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Phase change memory (PCM) is a high speed, high endurance, high density non-volatile memory technology that utilizes chalcogenide materials such as Ge 2 Sb 2 Te 5 (GST) that can be electrically cycled between highly resistive amorphous and low resistance crystalline phases. The resistance of the amorphous phase of PCM cells increase (drift) in time following a power law [1] , which increases the memory window in time but limits in the implementation of multi-bit-per-cell PCM. There has been a number of theories explaining the origin of drift [1] - [4] , mostly attributing it to structural relaxation, a thermally activated rearrangement of atoms in the amorphous structure [2] . Most of the studies on resistance drift are based on experiments at or above room temperature, where multiple processes may be occurring simultaneously. In this work, we melt-quenched amorphized GST line cells with widths ~120-140 nm, lengths ~390-500 nm, and thickness ~50nm ( Fig. 1 ) and monitored the current-voltage (I-V) characteristics using a parameter analyzer ( Fig. 2 ) in 85 K to 350 K range. We extracted the drift co-efficient from the slope of the resistance vs. time plots (using low-voltage measurements) and observed resistance drift in the 125 K -300 K temperature range ( Fig. 3 ). We found an approximately linear increase in drift coefficient as a function of temperature from ~ 0.07 at 125 K to ~ 0.11 at 200 K and approximately constant drift coefficients in the 200 K to 300 K range ( Fig. 3 inset). These results suggest that structural relaxations alone cannot account for resistance drift, additional mechanisms are contributing to this phenomenon [5] , [6] .
AbstractList Phase change memory (PCM) is a high speed, high endurance, high density non-volatile memory technology that utilizes chalcogenide materials such as Ge 2 Sb 2 Te 5 (GST) that can be electrically cycled between highly resistive amorphous and low resistance crystalline phases. The resistance of the amorphous phase of PCM cells increase (drift) in time following a power law [1] , which increases the memory window in time but limits in the implementation of multi-bit-per-cell PCM. There has been a number of theories explaining the origin of drift [1] - [4] , mostly attributing it to structural relaxation, a thermally activated rearrangement of atoms in the amorphous structure [2] . Most of the studies on resistance drift are based on experiments at or above room temperature, where multiple processes may be occurring simultaneously. In this work, we melt-quenched amorphized GST line cells with widths ~120-140 nm, lengths ~390-500 nm, and thickness ~50nm ( Fig. 1 ) and monitored the current-voltage (I-V) characteristics using a parameter analyzer ( Fig. 2 ) in 85 K to 350 K range. We extracted the drift co-efficient from the slope of the resistance vs. time plots (using low-voltage measurements) and observed resistance drift in the 125 K -300 K temperature range ( Fig. 3 ). We found an approximately linear increase in drift coefficient as a function of temperature from ~ 0.07 at 125 K to ~ 0.11 at 200 K and approximately constant drift coefficients in the 200 K to 300 K range ( Fig. 3 inset). These results suggest that structural relaxations alone cannot account for resistance drift, additional mechanisms are contributing to this phenomenon [5] , [6] .
Author Dirisaglik, Faruk
Hasan Talukder, ABM
Silva, Helena
Khan, Raihan S.
Gokirmak, Ali
Author_xml – sequence: 1
  givenname: Raihan S.
  surname: Khan
  fullname: Khan, Raihan S.
  organization: University of Connecticut,Department of Electrical and Computer Engineering,CT,USA,06269
– sequence: 2
  givenname: ABM
  surname: Hasan Talukder
  fullname: Hasan Talukder, ABM
  organization: University of Connecticut,Department of Electrical and Computer Engineering,CT,USA,06269
– sequence: 3
  givenname: Faruk
  surname: Dirisaglik
  fullname: Dirisaglik, Faruk
  organization: University of Connecticut,Department of Electrical and Computer Engineering,CT,USA,06269
– sequence: 4
  givenname: Ali
  surname: Gokirmak
  fullname: Gokirmak, Ali
  organization: University of Connecticut,Department of Electrical and Computer Engineering,CT,USA,06269
– sequence: 5
  givenname: Helena
  surname: Silva
  fullname: Silva, Helena
  organization: University of Connecticut,Department of Electrical and Computer Engineering,CT,USA,06269
BookMark eNotj0tOwzAUAA0CiaZwAoTkCyQ82_EnS5Tyk4pABdbVS_LcGqVOFGfT24NEV7MbzWTsIg6RGLsTUAgB1f1qU2uQ0hQSJBSVUFqU9oxlwkonLJTWnbOFNCXkxml1xbKUfgC0Ek4vmPmch3EMccc3lEKaMbbEV1PwMw-Rf-wxEa_3GHfE3-gwTEdeU9-na3bpsU90c-KSfT89ftUv-fr9-bV-WOdBgprzymnq1F8IeOma1ghhjZNdi23ZSUQ0BlXZQds1FVk04JWx0viyaTxi11i1ZLf_3kBE23EKB5yO29Oj-gUnD0fE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DRC50226.2020.9135147
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728170478
9781728170473
EISSN 2640-6853
EndPage 2
ExternalDocumentID 9135147
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
JC5
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-985ed31720f28bc6117682dcac4d2aaa66a34d0cdb9e7a60f36726f4bbfaadb73
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:22 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-985ed31720f28bc6117682dcac4d2aaa66a34d0cdb9e7a60f36726f4bbfaadb73
PageCount 2
ParticipantIDs ieee_primary_9135147
PublicationCentury 2000
PublicationDate 2020-June
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June
PublicationDecade 2020
PublicationTitle 2020 Device Research Conference (DRC)
PublicationTitleAbbrev DRC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053185
Score 2.1754625
Snippet Phase change memory (PCM) is a high speed, high endurance, high density non-volatile memory technology that utilizes chalcogenide materials such as Ge 2 Sb 2...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Amorphous semiconductors
Nonvolatile memory
Phase change materials
Resistance
Temperature distribution
Temperature measurement
Temperature sensors
Title Stopping Resistance Drift in Phase Change Memory Cells
URI https://ieeexplore.ieee.org/document/9135147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62J734aMU3OXg0bTabzSbn1tKLUloFbyVPLZSttNuD_97M7loVvHgLgRAygXwzmfm-Qeg2eB3dDEWJVZwS7jQnUltJhInxBec6VQ4yuuNZ_vgih_cgk3O348J476viM9-DYZXLdyu7ha-yvoJ2cjxvoVauZM3V-np1M2ABNwydhKr-cDrIIjxBEQKjvWbhrw4qFYCMDv-39RHqfjPx8GSHMcdozxcn6OCHiGAHiVm5ApGFVzz1G_AGYc1wvQglXhR48hZhCtccAvwAZbUfeOCXy00XPY_unwZj0nRDIAtG05IomXkX0Z7RwKSxIklipMCc1ZY7prUWQqfcUeuM8rkWNKQiZyJwY4LWzuTpKWoXq8KfIcyEjWGKdYKDmlhEpNRTozLpTBAy8eEcdcAC8_da8GLeHP7i7-lLtA9GruunrlC7XG_9NWpt3PamuqJPW6ORBA
link.rule.ids 310,311,782,786,791,792,798,23939,23940,25149,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IHtSLDzC-7cGjC6Xb7W7PgMEIhAAm3kifSkIWA8vBf2-7u6ImXrw1TZqm06TfTGe-bwDurBHOzeA4UJzigGpBg0SoJGDSxReUipBrn9HtTeLhS9Lpepmc-y0XxhiTF5-Zhh_muXy9VBv_Vdbkvp0cjSuwG9GYxQVb6-vdjTwPuOTotDBvdsbtyAGUL0MguFEu_dVDJYeQh8P_bX4E9W8uHhptUeYYdkx6Agc_ZARrwCbZ0sssvKKxWXt_0K_prOY2Q_MUjd4cUKGCRYAGvrD2A7XNYrGuw_NDd9ruBWU_hGBOcJgFPImMdnhPsCWJVKzVcrEC0UooqokQgjERUo2VltzEgmEbspgwS6W0QmgZh6dQTZepOQNEmHKBitKMej0xh0mhwZJHiZaWJS1jz6HmLTB7LyQvZuXhL_6evoW93nTQn_Ufh0-XsO8NXlRTXUE1W23MNVTWenOTX9cnMjqUVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2020+Device+Research+Conference+%28DRC%29&rft.atitle=Stopping+Resistance+Drift+in+Phase+Change+Memory+Cells&rft.au=Khan%2C+Raihan+S.&rft.au=Hasan+Talukder%2C+ABM&rft.au=Dirisaglik%2C+Faruk&rft.au=Gokirmak%2C+Ali&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2640-6853&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FDRC50226.2020.9135147&rft.externalDocID=9135147