Experimenting Forecasting Models for Solar Energy Harvesting Devices for Large Smart Cities Deployments

To make sustainable large IoT deployments in smart cities, a promising approach is to develop a new generation of solar energy harvesting IoT devices based on the concept of energy neutrality. Key to this concept are the models for the forecast of energy production, which provide input to the energy...

Full description

Saved in:
Bibliographic Details
Published in:2019 IEEE Symposium on Computers and Communications (ISCC) pp. 1177 - 1182
Main Authors: Caruso, Antonio, Chessa, Stefano, Escolar, Soledad, del Toro, Xavier, Kuzman, Melisa, Lopez, Juan C.
Format: Conference Proceeding
Language:English
Published: IEEE 01-06-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To make sustainable large IoT deployments in smart cities, a promising approach is to develop a new generation of solar energy harvesting IoT devices based on the concept of energy neutrality. Key to this concept are the models for the forecast of energy production, which provide input to the energy-neutral schedulers governing the activities of the IoT devices. The development of such models however need to be validated against real-world conditions. To this purpose we propose a testbed aimed at the collection of real-world dataset about the energy parameters of energy harvesting IoT devices, and, on the base of such a dataset, we perform a comparative assessment of state of the art and novel energy production forecast models.
AbstractList To make sustainable large IoT deployments in smart cities, a promising approach is to develop a new generation of solar energy harvesting IoT devices based on the concept of energy neutrality. Key to this concept are the models for the forecast of energy production, which provide input to the energy-neutral schedulers governing the activities of the IoT devices. The development of such models however need to be validated against real-world conditions. To this purpose we propose a testbed aimed at the collection of real-world dataset about the energy parameters of energy harvesting IoT devices, and, on the base of such a dataset, we perform a comparative assessment of state of the art and novel energy production forecast models.
Author Kuzman, Melisa
Lopez, Juan C.
Caruso, Antonio
Escolar, Soledad
Chessa, Stefano
del Toro, Xavier
Author_xml – sequence: 1
  givenname: Antonio
  surname: Caruso
  fullname: Caruso, Antonio
  organization: University of Salento,Dept. of Mathematics and Physics "Ennio de Giorgi",Lecce,Italy
– sequence: 2
  givenname: Stefano
  surname: Chessa
  fullname: Chessa, Stefano
  organization: University of Pisa,Computer Science Department,Pisa,Italy
– sequence: 3
  givenname: Soledad
  surname: Escolar
  fullname: Escolar, Soledad
  organization: University of Castilla-La Mancha,School of Computing Science,Ciudad Real,Spain
– sequence: 4
  givenname: Xavier
  surname: del Toro
  fullname: del Toro, Xavier
  organization: University of Castilla-La Mancha,School of Computing Science,Ciudad Real,Spain
– sequence: 5
  givenname: Melisa
  surname: Kuzman
  fullname: Kuzman, Melisa
  organization: University of Mar del Plata,Mar del Plata,Argentina
– sequence: 6
  givenname: Juan C.
  surname: Lopez
  fullname: Lopez, Juan C.
  organization: University of Castilla-La Mancha,School of Computing Science,Ciudad Real,Spain
BookMark eNotkM1Kw0AcxFdRsKk-gSD7Aon7md09StraQsRD9Fw2m3_CSpqUTSjm7U1tTzMMPwZmInTX9R0g9EJJQikxr7siy4RiWiSMUJNok5pUixsU0TmkzBhDbtGCpYLFimvzgKJh-CGEaMnUAjXr3yMEf4Bu9F2DN30AZ4d__9FX0A647gMu-tYGvO4gNBPe2nCCC7KCk3dwYXIbGsDFwYYRZ370c7yCY9tP5-7hEd3Xth3g6apL9L1Zf2XbOP9832VveewZ4WOsK2k51YIKSZ0hTlUciFDSKFeqsiSM16WigkrphKJlCkbMHxBbK15VrpJ8iZ4vvR4A9sd5mQ3T_noK_wPmSFnG
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCC47284.2019.8969684
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 1728129990
9781728129990
EISSN 2642-7389
EndPage 1182
ExternalDocumentID 8969684
Genre orig-research
GroupedDBID 29H
29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
JC5
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-8d5a31841451c90c7d3e047597cb7bb023fb714155c471b6e941090af73ddcd53
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:42 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-8d5a31841451c90c7d3e047597cb7bb023fb714155c471b6e941090af73ddcd53
PageCount 6
ParticipantIDs ieee_primary_8969684
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle 2019 IEEE Symposium on Computers and Communications (ISCC)
PublicationTitleAbbrev ISCC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008527
Score 2.1513717
Snippet To make sustainable large IoT deployments in smart cities, a promising approach is to develop a new generation of solar energy harvesting IoT devices based on...
SourceID ieee
SourceType Publisher
StartPage 1177
SubjectTerms Batteries
dataset
Energy harvesting
forecasting algorithms
IoT
Predictive models
Sensors
solar energy harvesting
Solar panels
Task analysis
testbed
Title Experimenting Forecasting Models for Solar Energy Harvesting Devices for Large Smart Cities Deployments
URI https://ieeexplore.ieee.org/document/8969684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTrAU2iLe8sBIaJ61M6epioQQUkBiq2L7gpCgRaT9_9w5IYDEwmYndiL5cXdx7vs-gEsdhiYw2npmSuEbRcTaUxUqD5MAbaXLWLvzjkUh757ULGeanKsOC4OILvkMr7no_uXbtdnyUdlEOSqXuAc9maoGq9VZXZWEskUAB346uSmyLJZkezl7i5ZD0_OXhIrzIPPB_969D-NvKJ6475zMAezgagiDLy0G0W7NIez9IBYcwXPeEfdTXbD-pilrV2bxs9daUKwqCv6sFblD_wkWCcKmyQyd-XBtbjlTXBRvtMJE5thX6TaLBDto3Bge5_lDtvBaSQXvJfSjjadsUtIujlmf16S-kTZCnyn_pNFSa3LglZYBBxmGvJaeYhpz5mZZychaY5PoEPqr9QqPQGgkz07xYpxYHdODShNE0jKhn0XfqvIYRjyKy_eGNWPZDuDJ35dPYZcnqknCOoP-5mOL59Cr7fbCzfMnzRqq7g
link.rule.ids 310,311,782,786,791,792,798,23939,23940,25149,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCl0BbxxgMjoXk4tTunqVpRKqQUia2K7QtCghbR9v_jc0IAiYXNTuxE8uPu4tz3fQDXKgx1oJXxdM-GbzYiVp4sUHoYB2gKlXPlzjtGmZg-yUFKNDk3NRYGEV3yGd5S0f3LN0u9oaOyrnRULnwbdmIueqJEa9V2V8ahqDDAgd_vjrMk4cJaX8rfsgui7PtLRMX5kGHzf28_gM43GI891G7mELZw0YLmlxoDqzZnC_Z_UAu24TmtqfttnZECp85XrkzyZ68rZqNVltGHLUsd_o-RTBCWTQboDIhrM6FccZa92TXGEse_am-TTLADx3XgcZjOkpFXiSp4L6EfrT1p4tzuY04Kvbrva2Ei9In0T2gllLIuvFAioDBDW7-letjnlLuZFyIyRps4OoLGYrnAY2AKrW-3ESOPjeL2QbkOImGI0s-gb2R-Am0axfl7yZsxrwbw9O_LV7A7mt1P5pPx9O4M9mjSypSsc2isPzZ4Adsrs7l0c_4J-DOuPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2019+IEEE+Symposium+on+Computers+and+Communications+%28ISCC%29&rft.atitle=Experimenting+Forecasting+Models+for+Solar+Energy+Harvesting+Devices+for+Large+Smart+Cities+Deployments&rft.au=Caruso%2C+Antonio&rft.au=Chessa%2C+Stefano&rft.au=Escolar%2C+Soledad&rft.au=del+Toro%2C+Xavier&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=2642-7389&rft.spage=1177&rft.epage=1182&rft_id=info:doi/10.1109%2FISCC47284.2019.8969684&rft.externalDocID=8969684