Experimenting Forecasting Models for Solar Energy Harvesting Devices for Large Smart Cities Deployments
To make sustainable large IoT deployments in smart cities, a promising approach is to develop a new generation of solar energy harvesting IoT devices based on the concept of energy neutrality. Key to this concept are the models for the forecast of energy production, which provide input to the energy...
Saved in:
Published in: | 2019 IEEE Symposium on Computers and Communications (ISCC) pp. 1177 - 1182 |
---|---|
Main Authors: | , , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-06-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | To make sustainable large IoT deployments in smart cities, a promising approach is to develop a new generation of solar energy harvesting IoT devices based on the concept of energy neutrality. Key to this concept are the models for the forecast of energy production, which provide input to the energy-neutral schedulers governing the activities of the IoT devices. The development of such models however need to be validated against real-world conditions. To this purpose we propose a testbed aimed at the collection of real-world dataset about the energy parameters of energy harvesting IoT devices, and, on the base of such a dataset, we perform a comparative assessment of state of the art and novel energy production forecast models. |
---|---|
AbstractList | To make sustainable large IoT deployments in smart cities, a promising approach is to develop a new generation of solar energy harvesting IoT devices based on the concept of energy neutrality. Key to this concept are the models for the forecast of energy production, which provide input to the energy-neutral schedulers governing the activities of the IoT devices. The development of such models however need to be validated against real-world conditions. To this purpose we propose a testbed aimed at the collection of real-world dataset about the energy parameters of energy harvesting IoT devices, and, on the base of such a dataset, we perform a comparative assessment of state of the art and novel energy production forecast models. |
Author | Kuzman, Melisa Lopez, Juan C. Caruso, Antonio Escolar, Soledad Chessa, Stefano del Toro, Xavier |
Author_xml | – sequence: 1 givenname: Antonio surname: Caruso fullname: Caruso, Antonio organization: University of Salento,Dept. of Mathematics and Physics "Ennio de Giorgi",Lecce,Italy – sequence: 2 givenname: Stefano surname: Chessa fullname: Chessa, Stefano organization: University of Pisa,Computer Science Department,Pisa,Italy – sequence: 3 givenname: Soledad surname: Escolar fullname: Escolar, Soledad organization: University of Castilla-La Mancha,School of Computing Science,Ciudad Real,Spain – sequence: 4 givenname: Xavier surname: del Toro fullname: del Toro, Xavier organization: University of Castilla-La Mancha,School of Computing Science,Ciudad Real,Spain – sequence: 5 givenname: Melisa surname: Kuzman fullname: Kuzman, Melisa organization: University of Mar del Plata,Mar del Plata,Argentina – sequence: 6 givenname: Juan C. surname: Lopez fullname: Lopez, Juan C. organization: University of Castilla-La Mancha,School of Computing Science,Ciudad Real,Spain |
BookMark | eNotkM1Kw0AcxFdRsKk-gSD7Aon7md09StraQsRD9Fw2m3_CSpqUTSjm7U1tTzMMPwZmInTX9R0g9EJJQikxr7siy4RiWiSMUJNok5pUixsU0TmkzBhDbtGCpYLFimvzgKJh-CGEaMnUAjXr3yMEf4Bu9F2DN30AZ4d__9FX0A647gMu-tYGvO4gNBPe2nCCC7KCk3dwYXIbGsDFwYYRZ370c7yCY9tP5-7hEd3Xth3g6apL9L1Zf2XbOP9832VveewZ4WOsK2k51YIKSZ0hTlUciFDSKFeqsiSM16WigkrphKJlCkbMHxBbK15VrpJ8iZ4vvR4A9sd5mQ3T_noK_wPmSFnG |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISCC47284.2019.8969684 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 1728129990 9781728129990 |
EISSN | 2642-7389 |
EndPage | 1182 |
ExternalDocumentID | 8969684 |
Genre | orig-research |
GroupedDBID | 29H 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI JC5 M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i203t-8d5a31841451c90c7d3e047597cb7bb023fb714155c471b6e941090af73ddcd53 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:42 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-8d5a31841451c90c7d3e047597cb7bb023fb714155c471b6e941090af73ddcd53 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8969684 |
PublicationCentury | 2000 |
PublicationDate | 2019-June |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
PublicationDecade | 2010 |
PublicationTitle | 2019 IEEE Symposium on Computers and Communications (ISCC) |
PublicationTitleAbbrev | ISCC |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008527 |
Score | 2.1513717 |
Snippet | To make sustainable large IoT deployments in smart cities, a promising approach is to develop a new generation of solar energy harvesting IoT devices based on... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1177 |
SubjectTerms | Batteries dataset Energy harvesting forecasting algorithms IoT Predictive models Sensors solar energy harvesting Solar panels Task analysis testbed |
Title | Experimenting Forecasting Models for Solar Energy Harvesting Devices for Large Smart Cities Deployments |
URI | https://ieeexplore.ieee.org/document/8969684 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTrAU2iLe8sBIaJ61M6epioQQUkBiq2L7gpCgRaT9_9w5IYDEwmYndiL5cXdx7vs-gEsdhiYw2npmSuEbRcTaUxUqD5MAbaXLWLvzjkUh757ULGeanKsOC4OILvkMr7no_uXbtdnyUdlEOSqXuAc9maoGq9VZXZWEskUAB346uSmyLJZkezl7i5ZD0_OXhIrzIPPB_969D-NvKJ6475zMAezgagiDLy0G0W7NIez9IBYcwXPeEfdTXbD-pilrV2bxs9daUKwqCv6sFblD_wkWCcKmyQyd-XBtbjlTXBRvtMJE5thX6TaLBDto3Bge5_lDtvBaSQXvJfSjjadsUtIujlmf16S-kTZCnyn_pNFSa3LglZYBBxmGvJaeYhpz5mZZychaY5PoEPqr9QqPQGgkz07xYpxYHdODShNE0jKhn0XfqvIYRjyKy_eGNWPZDuDJ35dPYZcnqknCOoP-5mOL59Cr7fbCzfMnzRqq7g |
link.rule.ids | 310,311,782,786,791,792,798,23939,23940,25149,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCl0BbxxgMjoXk4tTunqVpRKqQUia2K7QtCghbR9v_jc0IAiYXNTuxE8uPu4tz3fQDXKgx1oJXxdM-GbzYiVp4sUHoYB2gKlXPlzjtGmZg-yUFKNDk3NRYGEV3yGd5S0f3LN0u9oaOyrnRULnwbdmIueqJEa9V2V8ahqDDAgd_vjrMk4cJaX8rfsgui7PtLRMX5kGHzf28_gM43GI891G7mELZw0YLmlxoDqzZnC_Z_UAu24TmtqfttnZECp85XrkzyZ68rZqNVltGHLUsd_o-RTBCWTQboDIhrM6FccZa92TXGEse_am-TTLADx3XgcZjOkpFXiSp4L6EfrT1p4tzuY04Kvbrva2Ei9In0T2gllLIuvFAioDBDW7-letjnlLuZFyIyRps4OoLGYrnAY2AKrW-3ESOPjeL2QbkOImGI0s-gb2R-Am0axfl7yZsxrwbw9O_LV7A7mt1P5pPx9O4M9mjSypSsc2isPzZ4Adsrs7l0c_4J-DOuPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2019+IEEE+Symposium+on+Computers+and+Communications+%28ISCC%29&rft.atitle=Experimenting+Forecasting+Models+for+Solar+Energy+Harvesting+Devices+for+Large+Smart+Cities+Deployments&rft.au=Caruso%2C+Antonio&rft.au=Chessa%2C+Stefano&rft.au=Escolar%2C+Soledad&rft.au=del+Toro%2C+Xavier&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=2642-7389&rft.spage=1177&rft.epage=1182&rft_id=info:doi/10.1109%2FISCC47284.2019.8969684&rft.externalDocID=8969684 |