MSDPN: Monocular Depth Prediction with Partial Laser Observation using Multi-stage Neural Networks

In this study, a deep-learning-based multi-stage network architecture called Multi-Stage Depth Prediction Network (MSDPN) is proposed to predict a dense depth map using a 2D LiDAR and a monocular camera. Our proposed network consists of a multi-stage encoder-decoder architecture and Cross Stage Feat...

Full description

Saved in:
Bibliographic Details
Published in:2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 10750 - 10757
Main Authors: Lim, Hyungtae, Gil, Hyeonjae, Myung, Hyun
Format: Conference Proceeding
Language:English
Published: IEEE 24-10-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, a deep-learning-based multi-stage network architecture called Multi-Stage Depth Prediction Network (MSDPN) is proposed to predict a dense depth map using a 2D LiDAR and a monocular camera. Our proposed network consists of a multi-stage encoder-decoder architecture and Cross Stage Feature Aggregation (CSFA). The proposed multi-stage encoder-decoder architecture alleviates the partial observation problem caused by the characteristics of a 2D LiDAR, and CSFA prevents the multi-stage network from diluting the features and allows the network to learn the interspatial relationship between features better. Previous works use sub-sampled data from the ground truth as an input rather than actual 2D LiDAR data. In contrast, our approach trains the model and conducts experiments with a physically-collected 2D LiDAR dataset. To this end, we acquired our own dataset called KAIST RGBD-scan dataset and validated the effectiveness and the robustness of MSDPN under realistic conditions. As verified experimentally, our network yields promising performance against state-of-the-art methods. Additionally, we analyzed the performance of different input methods and confirmed that the reference depth map is robust in untrained scenarios.
AbstractList In this study, a deep-learning-based multi-stage network architecture called Multi-Stage Depth Prediction Network (MSDPN) is proposed to predict a dense depth map using a 2D LiDAR and a monocular camera. Our proposed network consists of a multi-stage encoder-decoder architecture and Cross Stage Feature Aggregation (CSFA). The proposed multi-stage encoder-decoder architecture alleviates the partial observation problem caused by the characteristics of a 2D LiDAR, and CSFA prevents the multi-stage network from diluting the features and allows the network to learn the interspatial relationship between features better. Previous works use sub-sampled data from the ground truth as an input rather than actual 2D LiDAR data. In contrast, our approach trains the model and conducts experiments with a physically-collected 2D LiDAR dataset. To this end, we acquired our own dataset called KAIST RGBD-scan dataset and validated the effectiveness and the robustness of MSDPN under realistic conditions. As verified experimentally, our network yields promising performance against state-of-the-art methods. Additionally, we analyzed the performance of different input methods and confirmed that the reference depth map is robust in untrained scenarios.
Author Myung, Hyun
Gil, Hyeonjae
Lim, Hyungtae
Author_xml – sequence: 1
  givenname: Hyungtae
  surname: Lim
  fullname: Lim, Hyungtae
  email: shapelim@kaist.ac.kr
  organization: KAIST (Korea Advanced Institute of Science and Technology),School of Electrical Engineering, KI-AI, KI-R
– sequence: 2
  givenname: Hyeonjae
  surname: Gil
  fullname: Gil, Hyeonjae
  email: jungmokoo@kaist.ac.kr
  organization: undergraduate intern of the laboratory at KAIST,Daejeon,South Korea,34141
– sequence: 3
  givenname: Hyun
  surname: Myung
  fullname: Myung, Hyun
  email: hmyung@kaist.ac.kr
  organization: KAIST (Korea Advanced Institute of Science and Technology),School of Electrical Engineering, KI-AI, KI-R
BookMark eNotUNtKw0AUXEXBWvsFguwPpO794pu0VQu9YfW5nCTbuhqTsrux-PdG7csMwwwDM5forG5qh9ANJUNKib2dPi_XQmrBh4wwMrRcEK30CRpYbahmhipGmTpFPUYlz4hR6gINYnwnhFCirbGqh_L5erxa3OF5UzdFW0HAY7dPb3gVXOmL5JsaH_yvhpA8VHgG0QW8zDv8gj-7jb7e4XlbJZ_FBDuHF64NXXTh0qEJH_EKnW-him5w5D56fZi8jJ6y2fJxOrqfZZ4RnjJpSieAEyULroXeatqN1MJoLa1yJDclyJwJsFBalktlNGeF5N1WIKC2lPfR9X-vd85t9sF_QvjeHF_hP7ybWBc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS45743.2020.9340767
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728162126
1728162122
EISSN 2153-0866
EndPage 10757
ExternalDocumentID 9340767
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-58de4a3065c3747f7111074877596e0b8da5b24a9ad92b568732c53978a0a6f13
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:57 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-58de4a3065c3747f7111074877596e0b8da5b24a9ad92b568732c53978a0a6f13
PageCount 8
ParticipantIDs ieee_primary_9340767
PublicationCentury 2000
PublicationDate 2020-Oct.-24
PublicationDateYYYYMMDD 2020-10-24
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-24
  day: 24
PublicationDecade 2020
PublicationTitle 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
PublicationTitleAbbrev IROS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.2122357
Snippet In this study, a deep-learning-based multi-stage network architecture called Multi-Stage Depth Prediction Network (MSDPN) is proposed to predict a dense depth...
SourceID ieee
SourceType Publisher
StartPage 10750
SubjectTerms Laser radar
Mobile robots
Network architecture
Neural networks
Path planning
Robustness
Two dimensional displays
Title MSDPN: Monocular Depth Prediction with Partial Laser Observation using Multi-stage Neural Networks
URI https://ieeexplore.ieee.org/document/9340767
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6Ek158gPGdHjy60N1tt1uvAsFEgYgm3ki7nUUTsxAe_9-ZZQOaePHWNG2aTLv7dabzfcPYLf7zXYLnJIi9EoH0kQyMyzS2Up0jggHkxB3uj_XgPe10SSbnbsuFAYAy-Qxa1Czf8v0sW1OorG1idD8SXWM1bdINV2sXTxHYZ5KKBBwK0358GY6lQoRELzASrWryryoqJYj0Dv-3_BFr7th4fLTFmWO2B8UJO_ghJNhg7nncGQ3uOX6hszKxlHdgvvrAafQOQ7bnFHDlIzoo9os_IXYt-NBtQ7Kc8t-nvKTjBnhhnAIn2Q4cOtjkiS-b7K3XfX3oB1X1hOAzEvEqUKkHaakwfBajz5DrkFw99E-0MgkIl3qrXCStsd5ETiWpjqNM4fUktcImeRifsnoxK-CMcZ9nWntlwUAoMyONCy2QzI7wLosTec4aZK3JfCOQMakMdfF39yXbpw0hAIjkFauvFmu4ZrWlX9-UW_oNY6qhjw
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ED-rFDzB-24NHB93WrqtXgUCEQQQTb6Rd39DEAOHj_7dvLKCJF09rljVpXrv--nt9v_cIeXB7voncOvFCK5jHbcA9ZVLpWrHMHIIBZKgdbg9l8h43mpgm53GrhQGAPPgMatjM7_LtLF2jq6yuQkc_Ilki-4K750attfOoMKliFRUyYJ-peue1P-TCYaTjgQGrFd1_1VHJYaR1_L8BnJDqTo9HB1ukOSV7MD0jRz9SCVaI6Q0bg-SJun90loeW0gbMVx-uG97EoPUpulzpAJeK_qJdh14L2jdbpyzFCPgJzQW5njsyToBi4g73abKJFF9WyVurOXpue0X9BO8zYOHKE7EFrrE0fBo61pBJH8meYyhSqAiYia0WJuBaaasCI6JYhkEq3AEl1kxHmR-ek_J0NoULQm2WSmmFBgU-TxVXxteAiXaYNWkY8UtSQWuN55sUGePCUFd_v74nB-1RrzvudpKXa3KIk4NwEPAbUl4t1nBLSku7vsun9xsUUKTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems+%28IROS%29&rft.atitle=MSDPN%3A+Monocular+Depth+Prediction+with+Partial+Laser+Observation+using+Multi-stage+Neural+Networks&rft.au=Lim%2C+Hyungtae&rft.au=Gil%2C+Hyeonjae&rft.au=Myung%2C+Hyun&rft.date=2020-10-24&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=10750&rft.epage=10757&rft_id=info:doi/10.1109%2FIROS45743.2020.9340767&rft.externalDocID=9340767