Prescribed-Time Extremum Seeking with Chirpy Probing for PDEs-Part II: Heat PDE

We introduce a prescribed-time extremum seeking (PT-ES) design for a PDE-ODE cascade of a heat PDE feeding into an integrator, which in turn feeds into an unknown map. Leveraging the integrator in the PDE-ODE plant, and employing "chirpy" probing and demodulation signals designed by PDE mo...

Full description

Saved in:
Bibliographic Details
Published in:2022 American Control Conference (ACC) pp. 800 - 805
Main Authors: Tugrul Yilmaz, Cemal, Krstic, Miroslav
Format: Conference Proceeding
Language:English
Published: American Automatic Control Council 08-06-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a prescribed-time extremum seeking (PT-ES) design for a PDE-ODE cascade of a heat PDE feeding into an integrator, which in turn feeds into an unknown map. Leveraging the integrator in the PDE-ODE plant, and employing "chirpy" probing and demodulation signals designed by PDE motion planning methods, we achieve convergence to the extremum in a user-prescribed time independent of the distance of the initial estimate from the optimizer. Although this PDE-ODE cascade is defined on a fixed spatial domain, it is inspired by free boundary models such as the Stefan model of phase change dynamics. The design is based on the time-varying backstepping approach, which transforms the PDE-ODE cascade into a suitable prescribed-time stable target system, and the averaging-based estimations of the gradient as well as the Hessian of the map. By means of Lyapunov method, it is shown that the average closed-loop dynamics are prescribed-time stable. This Part II paper is companion to a Part I paper which introduces PT-ES for two problems that are less challenging than here: a static map and a map with an input delay.
AbstractList We introduce a prescribed-time extremum seeking (PT-ES) design for a PDE-ODE cascade of a heat PDE feeding into an integrator, which in turn feeds into an unknown map. Leveraging the integrator in the PDE-ODE plant, and employing "chirpy" probing and demodulation signals designed by PDE motion planning methods, we achieve convergence to the extremum in a user-prescribed time independent of the distance of the initial estimate from the optimizer. Although this PDE-ODE cascade is defined on a fixed spatial domain, it is inspired by free boundary models such as the Stefan model of phase change dynamics. The design is based on the time-varying backstepping approach, which transforms the PDE-ODE cascade into a suitable prescribed-time stable target system, and the averaging-based estimations of the gradient as well as the Hessian of the map. By means of Lyapunov method, it is shown that the average closed-loop dynamics are prescribed-time stable. This Part II paper is companion to a Part I paper which introduces PT-ES for two problems that are less challenging than here: a static map and a map with an input delay.
Author Krstic, Miroslav
Tugrul Yilmaz, Cemal
Author_xml – sequence: 1
  givenname: Cemal
  surname: Tugrul Yilmaz
  fullname: Tugrul Yilmaz, Cemal
  email: cyilmaz@ucsd.edu
  organization: University of California, San Diego,Department of Mechanical and Aerospace Engineering,La Jolla,CA,USA
– sequence: 2
  givenname: Miroslav
  surname: Krstic
  fullname: Krstic, Miroslav
  email: krstic@ucsd.edu
  organization: University of California, San Diego,Department of Mechanical and Aerospace Engineering,La Jolla,CA,USA
BookMark eNotj1tLAkEYQKcoSM1fEMT8gbW57Vx6k81yQXAhe5a5fJNTrcrsRvrvS_LpwHk4cIboarvbAkL3lEwYN9Q8TKuq5FzoCSOMTYyWSgh6gcZGaSplKUpqJL9EA8aVLkot6Q0adt0HIdQYSQZo2WTofE4OQrFKLeDZoc_Qfrf4FeAzbd_xT-o3uNqkvD_iJu_cycVdxs3TrCsam3tc1494DrY_qVt0He1XB-MzR-jtebaq5sVi-VJX00WRGOF9QaOyhDnvo3GgqWOB6Mi5FUEEJYX8W-KGaOu91LH0IQShBY-SOeWV4Y6P0N1_NwHAep9Ta_Nxff7nvz0-UD0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.23919/ACC53348.2022.9867441
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665451963
1665451963
EISSN 2378-5861
EndPage 805
ExternalDocumentID 9867441
Genre orig-research
GroupedDBID -~X
23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-1f7a02bccf9be81b2d08f33a4d4d76463343908acc68f5cddd4843f62b7c793b3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:03 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-1f7a02bccf9be81b2d08f33a4d4d76463343908acc68f5cddd4843f62b7c793b3
PageCount 6
ParticipantIDs ieee_primary_9867441
PublicationCentury 2000
PublicationDate 2022-June-8
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-8
  day: 08
PublicationDecade 2020
PublicationTitle 2022 American Control Conference (ACC)
PublicationTitleAbbrev ACC
PublicationYear 2022
Publisher American Automatic Control Council
Publisher_xml – name: American Automatic Control Council
SSID ssj0019960
Score 1.8472198
Snippet We introduce a prescribed-time extremum seeking (PT-ES) design for a PDE-ODE cascade of a heat PDE feeding into an integrator, which in turn feeds into an...
SourceID ieee
SourceType Publisher
StartPage 800
SubjectTerms Chirp
Dynamics
Estimation
Heating systems
PD control
Planning
Transforms
Title Prescribed-Time Extremum Seeking with Chirpy Probing for PDEs-Part II: Heat PDE
URI https://ieeexplore.ieee.org/document/9867441
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6Ek158gFF8pAePFnbbsm29mWUJXJQETbyRPiMHHgE20X9vZyGoiRdv7SRtk-nj60znmyJ05yNKmlRaoqwMJOKxIDrCIlHauJQDAhkwFAdj8fQmewWkybnfc2G891XwmW9DsXrLdwtbgquso2QmOLDUa0LJLVdr_2IAWUa2DGDKVKo6j3lesUyjCUhpe9fy1xcqFYL0j_839glqflPx8GgPMqfowM_P0NGPLIIN9AxhFHHzG-8IMDpw8bFZ-Vk5w2PvwROOwdmK8_fpavkJnRmQxcsqHvWKNRnFxYOHwwc8iMcyiJrotV-85AOy-yeBTGnCNiQNQifUWBuU8fEaSl0iA2OaO-5ExrOoBqYSqa3NZOha5xyXnIWMGmHj9jTsHNXni7m_QNh2mVPGJTpIMNy62tlgbayraHgYnl6iBqhmstymwpjstNL6W3yFDkH7VWSVvEb1zar0N6i2duVtNXlfq0SZqg
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD-rFBxjf9uDRwu62u229mRWyREQSMPFGtq_IgUeATfTf21kIauLFWztJ22T6-DrT-aYI3VqPkioUmkgtHPF4zEnuYZHIXJmQAQIpMBSzPu--iccmpMm523BhrLVl8JmtQ7F8yzdTXYCrrCFFwhmw1HdixhO-Ymtt3gwgz8iKAxxRGcrGQ5qWPFNvBEZRfd321ycqJYa0Dv43-iGqfZPxcG8DM0doy06O0f6PPIJV9AKBFH77K2sIcDpw82M5t-NijPvWgi8cg7sVp--j-ewTOlMg89dV3HtsLkjPLx_cbt_jzB_MIKqh11ZzkGZk_VMCGUUBXZLQ8TyIlNZOKusvopEJhKM0Z4YZnrDEq4HKQORaJ8LF2hjDBKMuiRTXfoMqeoIqk-nEniKsY2qkMkHuBJhucW6009rXpTc9FAvPUBVUM5ytkmEM11o5_1t8g3azwXNn2Gl3ny7QHsxEGWclLlFlOS_sFdpemOK6nMgv83ec-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+American+Control+Conference+%28ACC%29&rft.atitle=Prescribed-Time+Extremum+Seeking+with+Chirpy+Probing+for+PDEs-Part+II%3A+Heat+PDE&rft.au=Tugrul+Yilmaz%2C+Cemal&rft.au=Krstic%2C+Miroslav&rft.date=2022-06-08&rft.pub=American+Automatic+Control+Council&rft.eissn=2378-5861&rft.spage=800&rft.epage=805&rft_id=info:doi/10.23919%2FACC53348.2022.9867441&rft.externalDocID=9867441