Cross-modal visuo-tactile object recognition using robotic active exploration
In this work, we propose a framework to deal with cross-modal visuo-tactile object recognition. By cross-modal visuo-tactile object recognition, we mean that the object recognition algorithm is trained only with visual data and is able to recognize objects leveraging only tactile perception. The pro...
Saved in:
Published in: | 2017 IEEE International Conference on Robotics and Automation (ICRA) pp. 5273 - 5280 |
---|---|
Main Authors: | , , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-05-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this work, we propose a framework to deal with cross-modal visuo-tactile object recognition. By cross-modal visuo-tactile object recognition, we mean that the object recognition algorithm is trained only with visual data and is able to recognize objects leveraging only tactile perception. The proposed cross-modal framework is constituted by three main elements. The first is a unified representation of visual and tactile data, which is suitable for cross-modal perception. The second is a set of features able to encode the chosen representation for classification applications. The third is a supervised learning algorithm, which takes advantage of the chosen descriptor. In order to show the results of our approach, we performed experiments with 15 objects common in domestic and industrial environments. Moreover, we compare the performance of the proposed framework with the performance of 10 humans in a simple cross-modal recognition task. |
---|---|
AbstractList | In this work, we propose a framework to deal with cross-modal visuo-tactile object recognition. By cross-modal visuo-tactile object recognition, we mean that the object recognition algorithm is trained only with visual data and is able to recognize objects leveraging only tactile perception. The proposed cross-modal framework is constituted by three main elements. The first is a unified representation of visual and tactile data, which is suitable for cross-modal perception. The second is a set of features able to encode the chosen representation for classification applications. The third is a supervised learning algorithm, which takes advantage of the chosen descriptor. In order to show the results of our approach, we performed experiments with 15 objects common in domestic and industrial environments. Moreover, we compare the performance of the proposed framework with the performance of 10 humans in a simple cross-modal recognition task. |
Author | Falco, Pietro Shuang Lu Natale, Ciro Pirozzi, Salvatore Cirillo, Andrea Dongheui Lee |
Author_xml | – sequence: 1 givenname: Pietro surname: Falco fullname: Falco, Pietro email: pietro.falco@tum.de organization: Autom. Control Eng., Tech. Univ. of Munich, Munich, Germany – sequence: 2 surname: Shuang Lu fullname: Shuang Lu organization: Autom. Control Eng., Tech. Univ. of Munich, Munich, Germany – sequence: 3 givenname: Andrea surname: Cirillo fullname: Cirillo, Andrea organization: Dept. of Ind. & Inf. Eng., Univ. degli Studi della Campania Luigi Vanvitelli, Aversa, Italy – sequence: 4 givenname: Ciro surname: Natale fullname: Natale, Ciro organization: Dept. of Ind. & Inf. Eng., Univ. degli Studi della Campania Luigi Vanvitelli, Aversa, Italy – sequence: 5 givenname: Salvatore surname: Pirozzi fullname: Pirozzi, Salvatore organization: Dept. of Ind. & Inf. Eng., Univ. degli Studi della Campania Luigi Vanvitelli, Aversa, Italy – sequence: 6 surname: Dongheui Lee fullname: Dongheui Lee organization: Autom. Control Eng., Tech. Univ. of Munich, Munich, Germany |
BookMark | eNotj8tKAzEUQCPowlY_QNzkB2bMY5LJXZbBR6EilAruSia5KZHppCTTon8vxa7O5nDgzMj1mEYk5IGzmnMGT8tuvagF423dggHN4YrMuGLAGi3l1y1573Iqpdonbwd6iuWYqsm6KQ5IU_-NbqIZXdqNcYpppMcSxx3NqU9TdPTsnZDiz2FI2Z6FO3IT7FDw_sI5-Xx53nRv1erjddktVlXkAFABcq9M462EHo31rA2CB6H74JxTDhHAc2F7phFNYAYsU0oY1TZai0ZaOSeP_92IiNtDjnubf7eXQ_kHjdtMNQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICRA.2017.7989619 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 150904633X 9781509046331 |
EndPage | 5280 |
ExternalDocumentID | 7989619 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i1999-9e1d584da39be8ad07f21f26bfccc5cee99d12ab06ee8f089a0552857466243a3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:05 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i1999-9e1d584da39be8ad07f21f26bfccc5cee99d12ab06ee8f089a0552857466243a3 |
OpenAccessLink | https://mediatum.ub.tum.de/doc/1356370/document.pdf |
PageCount | 8 |
ParticipantIDs | ieee_primary_7989619 |
PublicationCentury | 2000 |
PublicationDate | 2017-05 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05 |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE International Conference on Robotics and Automation (ICRA) |
PublicationTitleAbbrev | ICRA |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8936043 |
Snippet | In this work, we propose a framework to deal with cross-modal visuo-tactile object recognition. By cross-modal visuo-tactile object recognition, we mean that... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5273 |
SubjectTerms | Histograms Object recognition Robot sensing systems Three-dimensional displays Training Visualization |
Title | Cross-modal visuo-tactile object recognition using robotic active exploration |
URI | https://ieeexplore.ieee.org/document/7989619 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62J08qrfgmB4-m3WQ3m-QotVIPivgAbyWPiRTqRtquv99NdqkIXryFEMgwEzLDzPfNIHQpjcmZEYrk3gpSGO6JslITVjqqhXCNS45E4dmzeHiTN9PYJudqy4UBgAQ-g1Fcplq-C7aOqbKxUFKVscdnr1m1XK2uUEkzNb6bPF1HrJYYded-DUxJ_uJ273837aPhD_EOP25dygHagWqA7ifRk5GP4PQSfy3WdSCbSEdYAg4mplHwFgUUKhyB7O94FUxongTW6TvDrQjJCEP0ejt9mcxINwWBLFKLAAXUNVGC07kyILXLhGfUs9J4ay1vBFLKUaZNVgJIn0mlM86Z5KIoS1bkOj9E_SpUcISwo65gmoLPYhjkjAJmLOOSWuZzbsUxGkRVzD_bRhfzTgsnf2-fot2o7Rb9d4b6m1UN56i3dvVFMs03GMmT0Q |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3pSacW3OXg07Sa72SRHWVtabItoBW8lTynUjbRdf7-b3aUiePEWQiDDTMgMM983A8AtVyomigkUO81QoqhDQnOJSGqwZMyULjkQhYcvbPrGH_qhTc7dlgtjra3AZ7YbllUt33hdhFRZjwku0tDjc48mLGU1W6spVeJI9EbZ831Aa7Fuc_LXyJTKYwwO_3fXEej8UO_g09apHIMdm7fBJAu-DH14I5fwa7EuPNoEQsLSQq9CIgVucUA-hwHK_g5XXvnyUUBZfWiwFqEyQwe8DvqzbIiaOQhoUTUJEBabMk4wMhbKcmki5gh2JFVOa01LgYQwmEgVpdZyF3EhI0oJpyxJU5LEMj4Brdzn9hRAg01CJLYuCoGQUcISpQnlWBMXU83OQDuoYv5Zt7qYN1o4_3v7BuwPZ5PxfDyaPl6Ag6D5Ggt4CVqbVWGvwO7aFNeVmb4BDpyXIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Cross-modal+visuo-tactile+object+recognition+using+robotic+active+exploration&rft.au=Falco%2C+Pietro&rft.au=Shuang+Lu&rft.au=Cirillo%2C+Andrea&rft.au=Natale%2C+Ciro&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=5273&rft.epage=5280&rft_id=info:doi/10.1109%2FICRA.2017.7989619&rft.externalDocID=7989619 |