Cross-modal visuo-tactile object recognition using robotic active exploration

In this work, we propose a framework to deal with cross-modal visuo-tactile object recognition. By cross-modal visuo-tactile object recognition, we mean that the object recognition algorithm is trained only with visual data and is able to recognize objects leveraging only tactile perception. The pro...

Full description

Saved in:
Bibliographic Details
Published in:2017 IEEE International Conference on Robotics and Automation (ICRA) pp. 5273 - 5280
Main Authors: Falco, Pietro, Shuang Lu, Cirillo, Andrea, Natale, Ciro, Pirozzi, Salvatore, Dongheui Lee
Format: Conference Proceeding
Language:English
Published: IEEE 01-05-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, we propose a framework to deal with cross-modal visuo-tactile object recognition. By cross-modal visuo-tactile object recognition, we mean that the object recognition algorithm is trained only with visual data and is able to recognize objects leveraging only tactile perception. The proposed cross-modal framework is constituted by three main elements. The first is a unified representation of visual and tactile data, which is suitable for cross-modal perception. The second is a set of features able to encode the chosen representation for classification applications. The third is a supervised learning algorithm, which takes advantage of the chosen descriptor. In order to show the results of our approach, we performed experiments with 15 objects common in domestic and industrial environments. Moreover, we compare the performance of the proposed framework with the performance of 10 humans in a simple cross-modal recognition task.
AbstractList In this work, we propose a framework to deal with cross-modal visuo-tactile object recognition. By cross-modal visuo-tactile object recognition, we mean that the object recognition algorithm is trained only with visual data and is able to recognize objects leveraging only tactile perception. The proposed cross-modal framework is constituted by three main elements. The first is a unified representation of visual and tactile data, which is suitable for cross-modal perception. The second is a set of features able to encode the chosen representation for classification applications. The third is a supervised learning algorithm, which takes advantage of the chosen descriptor. In order to show the results of our approach, we performed experiments with 15 objects common in domestic and industrial environments. Moreover, we compare the performance of the proposed framework with the performance of 10 humans in a simple cross-modal recognition task.
Author Falco, Pietro
Shuang Lu
Natale, Ciro
Pirozzi, Salvatore
Cirillo, Andrea
Dongheui Lee
Author_xml – sequence: 1
  givenname: Pietro
  surname: Falco
  fullname: Falco, Pietro
  email: pietro.falco@tum.de
  organization: Autom. Control Eng., Tech. Univ. of Munich, Munich, Germany
– sequence: 2
  surname: Shuang Lu
  fullname: Shuang Lu
  organization: Autom. Control Eng., Tech. Univ. of Munich, Munich, Germany
– sequence: 3
  givenname: Andrea
  surname: Cirillo
  fullname: Cirillo, Andrea
  organization: Dept. of Ind. & Inf. Eng., Univ. degli Studi della Campania Luigi Vanvitelli, Aversa, Italy
– sequence: 4
  givenname: Ciro
  surname: Natale
  fullname: Natale, Ciro
  organization: Dept. of Ind. & Inf. Eng., Univ. degli Studi della Campania Luigi Vanvitelli, Aversa, Italy
– sequence: 5
  givenname: Salvatore
  surname: Pirozzi
  fullname: Pirozzi, Salvatore
  organization: Dept. of Ind. & Inf. Eng., Univ. degli Studi della Campania Luigi Vanvitelli, Aversa, Italy
– sequence: 6
  surname: Dongheui Lee
  fullname: Dongheui Lee
  organization: Autom. Control Eng., Tech. Univ. of Munich, Munich, Germany
BookMark eNotj8tKAzEUQCPowlY_QNzkB2bMY5LJXZbBR6EilAruSia5KZHppCTTon8vxa7O5nDgzMj1mEYk5IGzmnMGT8tuvagF423dggHN4YrMuGLAGi3l1y1573Iqpdonbwd6iuWYqsm6KQ5IU_-NbqIZXdqNcYpppMcSxx3NqU9TdPTsnZDiz2FI2Z6FO3IT7FDw_sI5-Xx53nRv1erjddktVlXkAFABcq9M462EHo31rA2CB6H74JxTDhHAc2F7phFNYAYsU0oY1TZai0ZaOSeP_92IiNtDjnubf7eXQ_kHjdtMNQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA.2017.7989619
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 150904633X
9781509046331
EndPage 5280
ExternalDocumentID 7989619
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i1999-9e1d584da39be8ad07f21f26bfccc5cee99d12ab06ee8f089a0552857466243a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:05 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1999-9e1d584da39be8ad07f21f26bfccc5cee99d12ab06ee8f089a0552857466243a3
OpenAccessLink https://mediatum.ub.tum.de/doc/1356370/document.pdf
PageCount 8
ParticipantIDs ieee_primary_7989619
PublicationCentury 2000
PublicationDate 2017-05
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05
PublicationDecade 2010
PublicationTitle 2017 IEEE International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8936043
Snippet In this work, we propose a framework to deal with cross-modal visuo-tactile object recognition. By cross-modal visuo-tactile object recognition, we mean that...
SourceID ieee
SourceType Publisher
StartPage 5273
SubjectTerms Histograms
Object recognition
Robot sensing systems
Three-dimensional displays
Training
Visualization
Title Cross-modal visuo-tactile object recognition using robotic active exploration
URI https://ieeexplore.ieee.org/document/7989619
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62J08qrfgmB4-m3WQ3m-QotVIPivgAbyWPiRTqRtquv99NdqkIXryFEMgwEzLDzPfNIHQpjcmZEYrk3gpSGO6JslITVjqqhXCNS45E4dmzeHiTN9PYJudqy4UBgAQ-g1Fcplq-C7aOqbKxUFKVscdnr1m1XK2uUEkzNb6bPF1HrJYYded-DUxJ_uJ273837aPhD_EOP25dygHagWqA7ifRk5GP4PQSfy3WdSCbSEdYAg4mplHwFgUUKhyB7O94FUxongTW6TvDrQjJCEP0ejt9mcxINwWBLFKLAAXUNVGC07kyILXLhGfUs9J4ay1vBFLKUaZNVgJIn0mlM86Z5KIoS1bkOj9E_SpUcISwo65gmoLPYhjkjAJmLOOSWuZzbsUxGkRVzD_bRhfzTgsnf2-fot2o7Rb9d4b6m1UN56i3dvVFMs03GMmT0Q
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3pSacW3OXg07Sa72SRHWVtabItoBW8lTynUjbRdf7-b3aUiePEWQiDDTMgMM983A8AtVyomigkUO81QoqhDQnOJSGqwZMyULjkQhYcvbPrGH_qhTc7dlgtjra3AZ7YbllUt33hdhFRZjwku0tDjc48mLGU1W6spVeJI9EbZ831Aa7Fuc_LXyJTKYwwO_3fXEej8UO_g09apHIMdm7fBJAu-DH14I5fwa7EuPNoEQsLSQq9CIgVucUA-hwHK_g5XXvnyUUBZfWiwFqEyQwe8DvqzbIiaOQhoUTUJEBabMk4wMhbKcmki5gh2JFVOa01LgYQwmEgVpdZyF3EhI0oJpyxJU5LEMj4Brdzn9hRAg01CJLYuCoGQUcISpQnlWBMXU83OQDuoYv5Zt7qYN1o4_3v7BuwPZ5PxfDyaPl6Ag6D5Ggt4CVqbVWGvwO7aFNeVmb4BDpyXIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Cross-modal+visuo-tactile+object+recognition+using+robotic+active+exploration&rft.au=Falco%2C+Pietro&rft.au=Shuang+Lu&rft.au=Cirillo%2C+Andrea&rft.au=Natale%2C+Ciro&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=5273&rft.epage=5280&rft_id=info:doi/10.1109%2FICRA.2017.7989619&rft.externalDocID=7989619