Delay-Optimal Task Offloading for Dynamic Fog Networks
Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning resources and services to be closer for end users. Limited by the computing and storage resources, end users offload the computation-intensive ta...
Saved in:
Published in: | ICC 2019 - 2019 IEEE International Conference on Communications (ICC) pp. 1 - 6 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-05-2019
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning resources and services to be closer for end users. Limited by the computing and storage resources, end users offload the computation-intensive tasks to the nearby fog nodes. However, due to mobility feature of the fog nodes, it's challenging to realize efficient task offloading. We rigorously formulate the task offloading problem for dynamic fog networks as an online stochastic optimization problem, and design offloading policies when the network is in stationary status and non-stationary status. When the fog network is in stationary status, we propose task offloading for the stationary status (TOS) algorithm to minimize the long-term average offloading delay. When the fog network is in non-stationary status, we propose two algorithms as task offloading for the non-stationary status using a sliding window (TON-SW) and task offloading for non-stationary status using a discount factor (TON-D) to minimize the average offloading delay. Besides, learning regret bounds of our algorithms are given. Numerical simulations show that our algorithms achieve a significant performance improvement compared to the upper-confidence bound (UCB) algorithm. |
---|---|
AbstractList | Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning resources and services to be closer for end users. Limited by the computing and storage resources, end users offload the computation-intensive tasks to the nearby fog nodes. However, due to mobility feature of the fog nodes, it's challenging to realize efficient task offloading. We rigorously formulate the task offloading problem for dynamic fog networks as an online stochastic optimization problem, and design offloading policies when the network is in stationary status and non-stationary status. When the fog network is in stationary status, we propose task offloading for the stationary status (TOS) algorithm to minimize the long-term average offloading delay. When the fog network is in non-stationary status, we propose two algorithms as task offloading for the non-stationary status using a sliding window (TON-SW) and task offloading for non-stationary status using a discount factor (TON-D) to minimize the average offloading delay. Besides, learning regret bounds of our algorithms are given. Numerical simulations show that our algorithms achieve a significant performance improvement compared to the upper-confidence bound (UCB) algorithm. |
Author | Wang, Kunlun Zhou, Ming-Tuo Yang, Yang Tan, Youyu |
Author_xml | – sequence: 1 givenname: Youyu surname: Tan fullname: Tan, Youyu – sequence: 2 givenname: Kunlun surname: Wang fullname: Wang, Kunlun – sequence: 3 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 4 givenname: Ming-Tuo surname: Zhou fullname: Zhou, Ming-Tuo |
BookMark | eNotj0FrwjAYhrPhYOq8D3bJH2j3fflMkxxHnZsg60XPkqSJdNZW2sLov5-gpxeew8PzztikaZvA2CtCigjmfZPnqQA0qVYZItIDWxilUZLONGhtHtkUDekEtaZnNuv7XwApDOGUZatQ2zEpLkN1tjXf2f7Eixjr1pZVc-Sx7fhqbOy58nzdHvlPGP7a7tS_sKdo6z4s7jtn-_XnLv9OtsXXJv_YJhUqOSTO-VJCEFI7BCoDRuMoeJKA3qkrM0poQFy66NESZMJaa1AoLxSaJdGcvd28VQjhcOmukd14uN-kf6u8RkM |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICC.2019.8761113 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781538680889 1538680882 |
EISSN | 1938-1883 |
EndPage | 6 |
ExternalDocumentID | 8761113 |
Genre | orig-research |
GroupedDBID | 29F 29I 6IE 6IF 6IH 6IK 6IM AAJGR ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI JC5 M43 RIE RIO |
ID | FETCH-LOGICAL-i175t-bbcd50e258b103de1f9b3ec3501cb7b1097280114bfc1a3062aaa9127c2719433 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:27:58 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-bbcd50e258b103de1f9b3ec3501cb7b1097280114bfc1a3062aaa9127c2719433 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8761113 |
PublicationCentury | 2000 |
PublicationDate | 2019-May |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-May |
PublicationDecade | 2010 |
PublicationTitle | ICC 2019 - 2019 IEEE International Conference on Communications (ICC) |
PublicationTitleAbbrev | ICC |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0052931 |
Score | 2.16201 |
Snippet | Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
Title | Delay-Optimal Task Offloading for Dynamic Fog Networks |
URI | https://ieeexplore.ieee.org/document/8761113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTrDwaBFveWDENLaTJp7TVmVpkSgSW-XHGSFCg2gz8O-xk7aAxMJmWbIsn33-zr7v7gCumeJGohS079GYxtIoqqxCyixKlmSa6zTEDo8f0slTNhiGNDk321gYRKzJZ3gbmrUv35amCl9lPa-5oTJ6C1qpzJpYrc2tm3jYYhs3ZCR7d3keeFv-IDRjfhVPqbFjtP-_WQ-g-x2ER-638HIIO7g4gr0f-QM70B9goT7p1Kv9myrITC1fydS5oqyJ8cTbo2TQVJwno_KZTBrK97ILj6PhLB_TdSEE-uLRfUW1NjaJkHvZsUhYZE5qgSb4BI1OdXAi8yy8bLQzTPlHAFdKScZTw1MmYyGOob0oF3gCJDOWIefMxYix9rZMJB26mHO0ItGJOIVOkMD8vcl1MV8v_uzv7nPYDUJuCIAX0F59VHgJraWtrurd-QLRZ4_R |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IHtSLDzC-7cGjlW13l27PPAIRwURMvJE-Zo0RWePCwX9vuwuoiRdvTZOm6bTTb9r5ZgbgiiluJMqQNh0a00gaRZVVSJlFyeJEcy187HDvQQyfknbHp8m5XsfCIGJBPsMb3yx8-TYzC_9V1nCa6yujV2AzjkRTlNFaq3s3dsDFVo7IQDb6rZZnbrmjUI76VT6lQI_u7v_m3YP6dxgeuV8DzD5s4OwAdn5kEKxBs41T9UlHTvHf1JSMVf5KRmk6zQpqPHEWKWmXNedJN3smw5L0ndfhsdsZt3p0WQqBvjh8n1OtjY0D5E56LAgtslTqEI33ChottHcj88S_bXRqmHLPAK6UkowLwwWTURgeQnWWzfAISGIsQ85ZGiFG2lkzgUwxjThHG8Y6Do-h5iUweS-zXUyWiz_5u_sStnrju8Fk0B_ensK2F3hJBzyD6vxjgedQye3iotipL5hlkyI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ICC+2019+-+2019+IEEE+International+Conference+on+Communications+%28ICC%29&rft.atitle=Delay-Optimal+Task+Offloading+for+Dynamic+Fog+Networks&rft.au=Tan%2C+Youyu&rft.au=Wang%2C+Kunlun&rft.au=Yang%2C+Yang&rft.au=Zhou%2C+Ming-Tuo&rft.date=2019-05-01&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICC.2019.8761113&rft.externalDocID=8761113 |