Delay-Optimal Task Offloading for Dynamic Fog Networks

Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning resources and services to be closer for end users. Limited by the computing and storage resources, end users offload the computation-intensive ta...

Full description

Saved in:
Bibliographic Details
Published in:ICC 2019 - 2019 IEEE International Conference on Communications (ICC) pp. 1 - 6
Main Authors: Tan, Youyu, Wang, Kunlun, Yang, Yang, Zhou, Ming-Tuo
Format: Conference Proceeding
Language:English
Published: IEEE 01-05-2019
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning resources and services to be closer for end users. Limited by the computing and storage resources, end users offload the computation-intensive tasks to the nearby fog nodes. However, due to mobility feature of the fog nodes, it's challenging to realize efficient task offloading. We rigorously formulate the task offloading problem for dynamic fog networks as an online stochastic optimization problem, and design offloading policies when the network is in stationary status and non-stationary status. When the fog network is in stationary status, we propose task offloading for the stationary status (TOS) algorithm to minimize the long-term average offloading delay. When the fog network is in non-stationary status, we propose two algorithms as task offloading for the non-stationary status using a sliding window (TON-SW) and task offloading for non-stationary status using a discount factor (TON-D) to minimize the average offloading delay. Besides, learning regret bounds of our algorithms are given. Numerical simulations show that our algorithms achieve a significant performance improvement compared to the upper-confidence bound (UCB) algorithm.
AbstractList Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning resources and services to be closer for end users. Limited by the computing and storage resources, end users offload the computation-intensive tasks to the nearby fog nodes. However, due to mobility feature of the fog nodes, it's challenging to realize efficient task offloading. We rigorously formulate the task offloading problem for dynamic fog networks as an online stochastic optimization problem, and design offloading policies when the network is in stationary status and non-stationary status. When the fog network is in stationary status, we propose task offloading for the stationary status (TOS) algorithm to minimize the long-term average offloading delay. When the fog network is in non-stationary status, we propose two algorithms as task offloading for the non-stationary status using a sliding window (TON-SW) and task offloading for non-stationary status using a discount factor (TON-D) to minimize the average offloading delay. Besides, learning regret bounds of our algorithms are given. Numerical simulations show that our algorithms achieve a significant performance improvement compared to the upper-confidence bound (UCB) algorithm.
Author Wang, Kunlun
Zhou, Ming-Tuo
Yang, Yang
Tan, Youyu
Author_xml – sequence: 1
  givenname: Youyu
  surname: Tan
  fullname: Tan, Youyu
– sequence: 2
  givenname: Kunlun
  surname: Wang
  fullname: Wang, Kunlun
– sequence: 3
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 4
  givenname: Ming-Tuo
  surname: Zhou
  fullname: Zhou, Ming-Tuo
BookMark eNotj0FrwjAYhrPhYOq8D3bJH2j3fflMkxxHnZsg60XPkqSJdNZW2sLov5-gpxeew8PzztikaZvA2CtCigjmfZPnqQA0qVYZItIDWxilUZLONGhtHtkUDekEtaZnNuv7XwApDOGUZatQ2zEpLkN1tjXf2f7Eixjr1pZVc-Sx7fhqbOy58nzdHvlPGP7a7tS_sKdo6z4s7jtn-_XnLv9OtsXXJv_YJhUqOSTO-VJCEFI7BCoDRuMoeJKA3qkrM0poQFy66NESZMJaa1AoLxSaJdGcvd28VQjhcOmukd14uN-kf6u8RkM
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICC.2019.8761113
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538680889
1538680882
EISSN 1938-1883
EndPage 6
ExternalDocumentID 8761113
Genre orig-research
GroupedDBID 29F
29I
6IE
6IF
6IH
6IK
6IM
AAJGR
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
JC5
M43
RIE
RIO
ID FETCH-LOGICAL-i175t-bbcd50e258b103de1f9b3ec3501cb7b1097280114bfc1a3062aaa9127c2719433
IEDL.DBID RIE
IngestDate Wed Jun 26 19:27:58 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-bbcd50e258b103de1f9b3ec3501cb7b1097280114bfc1a3062aaa9127c2719433
PageCount 6
ParticipantIDs ieee_primary_8761113
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationTitle ICC 2019 - 2019 IEEE International Conference on Communications (ICC)
PublicationTitleAbbrev ICC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0052931
Score 2.16201
Snippet Fog computing is a promising paradigm to perform low-latency computation for supporting the internet of things (IoT) applications. It enables provisioning...
SourceID ieee
SourceType Publisher
StartPage 1
Title Delay-Optimal Task Offloading for Dynamic Fog Networks
URI https://ieeexplore.ieee.org/document/8761113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTrDwaBFveWDENLaTJp7TVmVpkSgSW-XHGSFCg2gz8O-xk7aAxMJmWbIsn33-zr7v7gCumeJGohS079GYxtIoqqxCyixKlmSa6zTEDo8f0slTNhiGNDk321gYRKzJZ3gbmrUv35amCl9lPa-5oTJ6C1qpzJpYrc2tm3jYYhs3ZCR7d3keeFv-IDRjfhVPqbFjtP-_WQ-g-x2ER-638HIIO7g4gr0f-QM70B9goT7p1Kv9myrITC1fydS5oqyJ8cTbo2TQVJwno_KZTBrK97ILj6PhLB_TdSEE-uLRfUW1NjaJkHvZsUhYZE5qgSb4BI1OdXAi8yy8bLQzTPlHAFdKScZTw1MmYyGOob0oF3gCJDOWIefMxYix9rZMJB26mHO0ItGJOIVOkMD8vcl1MV8v_uzv7nPYDUJuCIAX0F59VHgJraWtrurd-QLRZ4_R
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IHtSLDzC-7cGjlW13l27PPAIRwURMvJE-Zo0RWePCwX9vuwuoiRdvTZOm6bTTb9r5ZgbgiiluJMqQNh0a00gaRZVVSJlFyeJEcy187HDvQQyfknbHp8m5XsfCIGJBPsMb3yx8-TYzC_9V1nCa6yujV2AzjkRTlNFaq3s3dsDFVo7IQDb6rZZnbrmjUI76VT6lQI_u7v_m3YP6dxgeuV8DzD5s4OwAdn5kEKxBs41T9UlHTvHf1JSMVf5KRmk6zQpqPHEWKWmXNedJN3smw5L0ndfhsdsZt3p0WQqBvjh8n1OtjY0D5E56LAgtslTqEI33ChottHcj88S_bXRqmHLPAK6UkowLwwWTURgeQnWWzfAISGIsQ85ZGiFG2lkzgUwxjThHG8Y6Do-h5iUweS-zXUyWiz_5u_sStnrju8Fk0B_ensK2F3hJBzyD6vxjgedQye3iotipL5hlkyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ICC+2019+-+2019+IEEE+International+Conference+on+Communications+%28ICC%29&rft.atitle=Delay-Optimal+Task+Offloading+for+Dynamic+Fog+Networks&rft.au=Tan%2C+Youyu&rft.au=Wang%2C+Kunlun&rft.au=Yang%2C+Yang&rft.au=Zhou%2C+Ming-Tuo&rft.date=2019-05-01&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICC.2019.8761113&rft.externalDocID=8761113