A Machine-Learning-Based Handover Prediction for Anticipatory Techniques in Wi-Fi Networks

Handover and blind spots in Wi-Fi networks generate temporary interruptions of connection between the devices and the access point, with major quality degradation, for example to video streaming. In this paper we propose a technique to predict the event of handover and blind spots in order to allow...

Full description

Saved in:
Bibliographic Details
Published in:2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN) pp. 341 - 345
Main Authors: Feltrin, Mauro, Tomasin, Stefano
Format: Conference Proceeding
Language:English
Published: IEEE 01-07-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Handover and blind spots in Wi-Fi networks generate temporary interruptions of connection between the devices and the access point, with major quality degradation, for example to video streaming. In this paper we propose a technique to predict the event of handover and blind spots in order to allow the implementation of anticipatory techniques, where connection resources are reallocated or video buffers are filled with low-definition video frames before the connection gets lost. The prediction is based on a machine-learning approach, where the received signal strength indicator (RSSI) is monitored and an upcoming handover is recognized by the pattern of the RSSI over time. Since a number of impairments (different paths followed by the user, different movement speed, fading, noise) affect the RSSI evolution, we resort to a neural-network to learn the peculiarities of each handover and solve the pattern recnonitinn Problem.
AbstractList Handover and blind spots in Wi-Fi networks generate temporary interruptions of connection between the devices and the access point, with major quality degradation, for example to video streaming. In this paper we propose a technique to predict the event of handover and blind spots in order to allow the implementation of anticipatory techniques, where connection resources are reallocated or video buffers are filled with low-definition video frames before the connection gets lost. The prediction is based on a machine-learning approach, where the received signal strength indicator (RSSI) is monitored and an upcoming handover is recognized by the pattern of the RSSI over time. Since a number of impairments (different paths followed by the user, different movement speed, fading, noise) affect the RSSI evolution, we resort to a neural-network to learn the peculiarities of each handover and solve the pattern recnonitinn Problem.
Author Feltrin, Mauro
Tomasin, Stefano
Author_xml – sequence: 1
  givenname: Mauro
  surname: Feltrin
  fullname: Feltrin, Mauro
  organization: Department of Information Engineering, University of Padova, Italy
– sequence: 2
  givenname: Stefano
  surname: Tomasin
  fullname: Tomasin, Stefano
  organization: Department of Information Engineering, University of Padova, Italy
BookMark eNotkM1OAjEURqvRREBeQDd9gWL_p7NEIkKC6AJi4oZ02jtyo3awM2h4e0nkO4uzO4uvTy5Sk4CQG8FHQvDybj5ZT5cjyYUbOa1sUdoz0hdGOauPqHPSk8Ia5oyyV2TYtlhxLXVhSyV75G1Mn3zYYgK2AJ8Tpnd271uIdOZTbH4g05cMEUOHTaJ1k-k4dRhw57smH-gKwjbh9x5aiom-IpsiXUL32-SP9ppc1v6zheHJA7KePqwmM7Z4fpxPxguGojAdq2QUPkplpVM-1jEUwjgjjytrba3ypqq1L7gCHqpa2chD1KI2ZVU6LW1QA3L730UA2Owyfvl82JyuUH9KglTJ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICUFN.2018.8436796
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538646463
9781538646465
EISSN 2165-8536
EndPage 345
ExternalDocumentID 8436796
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-b2d1ad236283adfdc7158522229f4663a5bf4a703e0cbf36d0cd41f59b98426c3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:19 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b2d1ad236283adfdc7158522229f4663a5bf4a703e0cbf36d0cd41f59b98426c3
PageCount 5
ParticipantIDs ieee_primary_8436796
PublicationCentury 2000
PublicationDate 2018-July
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-July
PublicationDecade 2010
PublicationTitle 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)
PublicationTitleAbbrev ICUFN
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib042476932
ssib025838730
ssj0002684698
Score 1.7792093
Snippet Handover and blind spots in Wi-Fi networks generate temporary interruptions of connection between the devices and the access point, with major quality...
SourceID ieee
SourceType Publisher
StartPage 341
SubjectTerms Anticipatory Techniques
Artificial neural networks
Handover
Machine learning
Pattern recognition
Streaming media
Wi-Fi Networks
Wireless fidelity
Title A Machine-Learning-Based Handover Prediction for Anticipatory Techniques in Wi-Fi Networks
URI https://ieeexplore.ieee.org/document/8436796
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJyZALeItD4y4TWLXj7EUojJQIdEKxFL5ibKkqI-Bf48vSVshsbBFkWJF57O-89133yF0y6OfiIGlhCnDCNNMEq24J4nQngoRESpAHnL8Kibv8uERZHLudr0w3vuKfOZ78FjV8t3CbiBV1peMQtqjhVpCybpXa-s7GZT_xD4UZhmDKX_ZLt8CqiZcyW3fTKL6T6NZPgFyl-w1C_-asFIBTH70v187Rt19px5-2WHQCTrwZQd9DPFzxZH0pJFP_ST3Ea0cHuvSAWczfgMFGtgUHKNWPCwbcvVi-Y2nW1nXFS5K_FaQvMCTmi2-6qJZ_jgdjUkzQ4EUMTBYE5O5VLsswpSk2gVnRRovCBlM8Q4sRht6YALT8dj7xJpAuUusY2kYKKNkBG9LT1G7XJT-DGFvrBTSxQua4czqaF3KubMypBHkE2HOUQfsMv-qZTLmjUku_n59iQ7B9DXz9Qq118uNv0atldvcVBv7A5XMoG0
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDDABahFvPDDiNk0c2xlLaZSKNkKiFYil8isoS4r6GPj3-JK0FRILW2QpkXXn6DvfffcdQvfMnRMe6oDQSFFCJRVERswSj0sbcO4QKoM8ZPLK03fxNACZnIdtL4y1tiSf2TY8lrV8M9drSJV1BA0g7bGPDkLKGa-6tTanx4cCIN8Fw9SnMOfP32ZcQNeERWLTOeNFnWF_GqdA7xLt-tO_ZqyUEBMf_29zJ6i169XDL1sUOkV7tmiijx4elyxJS2oB1U_y6PDK4EQWBlib7h0o0YBbsItbca-o6dXzxTeebIRdlzgv8FtO4hynFV982ULTeDDpJ6SeokByFxqsiPJNVxrfAZUIpMmM5l13RfBhjndGXbwhQ5VR6X5862mVBcx42tBuFkYqEg6-dXCGGsW8sOcIW6UFF8Zd0RSjWjrrBowZLbKug3mPqwvUBLvMviqhjFltksu_l-_QYTIZj2ajYfp8hY7ADRUP9ho1Vou1vUH7S7O-LZ38Azngo74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+Tenth+International+Conference+on+Ubiquitous+and+Future+Networks+%28ICUFN%29&rft.atitle=A+Machine-Learning-Based+Handover+Prediction+for+Anticipatory+Techniques+in+Wi-Fi+Networks&rft.au=Feltrin%2C+Mauro&rft.au=Tomasin%2C+Stefano&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=2165-8536&rft.spage=341&rft.epage=345&rft_id=info:doi/10.1109%2FICUFN.2018.8436796&rft.externalDocID=8436796