A Machine-Learning-Based Handover Prediction for Anticipatory Techniques in Wi-Fi Networks
Handover and blind spots in Wi-Fi networks generate temporary interruptions of connection between the devices and the access point, with major quality degradation, for example to video streaming. In this paper we propose a technique to predict the event of handover and blind spots in order to allow...
Saved in:
Published in: | 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN) pp. 341 - 345 |
---|---|
Main Authors: | , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-07-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Handover and blind spots in Wi-Fi networks generate temporary interruptions of connection between the devices and the access point, with major quality degradation, for example to video streaming. In this paper we propose a technique to predict the event of handover and blind spots in order to allow the implementation of anticipatory techniques, where connection resources are reallocated or video buffers are filled with low-definition video frames before the connection gets lost. The prediction is based on a machine-learning approach, where the received signal strength indicator (RSSI) is monitored and an upcoming handover is recognized by the pattern of the RSSI over time. Since a number of impairments (different paths followed by the user, different movement speed, fading, noise) affect the RSSI evolution, we resort to a neural-network to learn the peculiarities of each handover and solve the pattern recnonitinn Problem. |
---|---|
AbstractList | Handover and blind spots in Wi-Fi networks generate temporary interruptions of connection between the devices and the access point, with major quality degradation, for example to video streaming. In this paper we propose a technique to predict the event of handover and blind spots in order to allow the implementation of anticipatory techniques, where connection resources are reallocated or video buffers are filled with low-definition video frames before the connection gets lost. The prediction is based on a machine-learning approach, where the received signal strength indicator (RSSI) is monitored and an upcoming handover is recognized by the pattern of the RSSI over time. Since a number of impairments (different paths followed by the user, different movement speed, fading, noise) affect the RSSI evolution, we resort to a neural-network to learn the peculiarities of each handover and solve the pattern recnonitinn Problem. |
Author | Feltrin, Mauro Tomasin, Stefano |
Author_xml | – sequence: 1 givenname: Mauro surname: Feltrin fullname: Feltrin, Mauro organization: Department of Information Engineering, University of Padova, Italy – sequence: 2 givenname: Stefano surname: Tomasin fullname: Tomasin, Stefano organization: Department of Information Engineering, University of Padova, Italy |
BookMark | eNotkM1OAjEURqvRREBeQDd9gWL_p7NEIkKC6AJi4oZ02jtyo3awM2h4e0nkO4uzO4uvTy5Sk4CQG8FHQvDybj5ZT5cjyYUbOa1sUdoz0hdGOauPqHPSk8Ia5oyyV2TYtlhxLXVhSyV75G1Mn3zYYgK2AJ8Tpnd271uIdOZTbH4g05cMEUOHTaJ1k-k4dRhw57smH-gKwjbh9x5aiom-IpsiXUL32-SP9ppc1v6zheHJA7KePqwmM7Z4fpxPxguGojAdq2QUPkplpVM-1jEUwjgjjytrba3ypqq1L7gCHqpa2chD1KI2ZVU6LW1QA3L730UA2Owyfvl82JyuUH9KglTJ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICUFN.2018.8436796 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1538646463 9781538646465 |
EISSN | 2165-8536 |
EndPage | 345 |
ExternalDocumentID | 8436796 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-b2d1ad236283adfdc7158522229f4663a5bf4a703e0cbf36d0cd41f59b98426c3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:19 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b2d1ad236283adfdc7158522229f4663a5bf4a703e0cbf36d0cd41f59b98426c3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8436796 |
PublicationCentury | 2000 |
PublicationDate | 2018-July |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-July |
PublicationDecade | 2010 |
PublicationTitle | 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN) |
PublicationTitleAbbrev | ICUFN |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib042476932 ssib025838730 ssj0002684698 |
Score | 1.7792093 |
Snippet | Handover and blind spots in Wi-Fi networks generate temporary interruptions of connection between the devices and the access point, with major quality... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 341 |
SubjectTerms | Anticipatory Techniques Artificial neural networks Handover Machine learning Pattern recognition Streaming media Wi-Fi Networks Wireless fidelity |
Title | A Machine-Learning-Based Handover Prediction for Anticipatory Techniques in Wi-Fi Networks |
URI | https://ieeexplore.ieee.org/document/8436796 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJyZALeItD4y4TWLXj7EUojJQIdEKxFL5ibKkqI-Bf48vSVshsbBFkWJF57O-89133yF0y6OfiIGlhCnDCNNMEq24J4nQngoRESpAHnL8Kibv8uERZHLudr0w3vuKfOZ78FjV8t3CbiBV1peMQtqjhVpCybpXa-s7GZT_xD4UZhmDKX_ZLt8CqiZcyW3fTKL6T6NZPgFyl-w1C_-asFIBTH70v187Rt19px5-2WHQCTrwZQd9DPFzxZH0pJFP_ST3Ea0cHuvSAWczfgMFGtgUHKNWPCwbcvVi-Y2nW1nXFS5K_FaQvMCTmi2-6qJZ_jgdjUkzQ4EUMTBYE5O5VLsswpSk2gVnRRovCBlM8Q4sRht6YALT8dj7xJpAuUusY2kYKKNkBG9LT1G7XJT-DGFvrBTSxQua4czqaF3KubMypBHkE2HOUQfsMv-qZTLmjUku_n59iQ7B9DXz9Qq118uNv0atldvcVBv7A5XMoG0 |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDDABahFvPDDiNk0c2xlLaZSKNkKiFYil8isoS4r6GPj3-JK0FRILW2QpkXXn6DvfffcdQvfMnRMe6oDQSFFCJRVERswSj0sbcO4QKoM8ZPLK03fxNACZnIdtL4y1tiSf2TY8lrV8M9drSJV1BA0g7bGPDkLKGa-6tTanx4cCIN8Fw9SnMOfP32ZcQNeERWLTOeNFnWF_GqdA7xLt-tO_ZqyUEBMf_29zJ6i169XDL1sUOkV7tmiijx4elyxJS2oB1U_y6PDK4EQWBlib7h0o0YBbsItbca-o6dXzxTeebIRdlzgv8FtO4hynFV982ULTeDDpJ6SeokByFxqsiPJNVxrfAZUIpMmM5l13RfBhjndGXbwhQ5VR6X5862mVBcx42tBuFkYqEg6-dXCGGsW8sOcIW6UFF8Zd0RSjWjrrBowZLbKug3mPqwvUBLvMviqhjFltksu_l-_QYTIZj2ajYfp8hY7ADRUP9ho1Vou1vUH7S7O-LZ38Azngo74 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+Tenth+International+Conference+on+Ubiquitous+and+Future+Networks+%28ICUFN%29&rft.atitle=A+Machine-Learning-Based+Handover+Prediction+for+Anticipatory+Techniques+in+Wi-Fi+Networks&rft.au=Feltrin%2C+Mauro&rft.au=Tomasin%2C+Stefano&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=2165-8536&rft.spage=341&rft.epage=345&rft_id=info:doi/10.1109%2FICUFN.2018.8436796&rft.externalDocID=8436796 |