A class-separability-based method for multi/hyperspectral image color visualization

In this paper, a new color visualization technique for multi- and hyperspectral images is proposed. This method is based on a maximization of the perceptual distance between the scene endmembers as well as natural constancy of the resulting images. The stretched CMF principle is used to transform re...

Full description

Saved in:
Bibliographic Details
Published in:2010 IEEE International Conference on Image Processing pp. 1321 - 1324
Main Authors: Le Moan, S, Mansouri, A, Hardeberg, J Y, Voisin, Y
Format: Conference Proceeding
Language:English
Published: IEEE 01-09-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a new color visualization technique for multi- and hyperspectral images is proposed. This method is based on a maximization of the perceptual distance between the scene endmembers as well as natural constancy of the resulting images. The stretched CMF principle is used to transform reflectance into values in the CIE L*a*b* colorspace combined with an a priori known segmentation map for separability enhancement between classes. Boundaries are set in the a*b* subspace to balance the natural palette of colors in order to ease interpretation by a human expert. Convincing results on two different images are shown.
AbstractList In this paper, a new color visualization technique for multi- and hyperspectral images is proposed. This method is based on a maximization of the perceptual distance between the scene endmembers as well as natural constancy of the resulting images. The stretched CMF principle is used to transform reflectance into values in the CIE L*a*b* colorspace combined with an a priori known segmentation map for separability enhancement between classes. Boundaries are set in the a*b* subspace to balance the natural palette of colors in order to ease interpretation by a human expert. Convincing results on two different images are shown.
Author Voisin, Y
Mansouri, A
Hardeberg, J Y
Le Moan, S
Author_xml – sequence: 1
  givenname: S
  surname: Le Moan
  fullname: Le Moan, S
  email: steven.le-moan@u-bourgogne.fr
  organization: Le2i, Univ. de Bourgogne, Auxerre, France
– sequence: 2
  givenname: A
  surname: Mansouri
  fullname: Mansouri, A
  email: alamin.mansouri@u-bourgogne.fr
  organization: Le2i, Univ. de Bourgogne, Auxerre, France
– sequence: 3
  givenname: J Y
  surname: Hardeberg
  fullname: Hardeberg, J Y
  email: jon.hardeberg@hig.no
  organization: ColorLab, Gjøvik, Norway
– sequence: 4
  givenname: Y
  surname: Voisin
  fullname: Voisin, Y
  email: yvon.voisin@u-bourgogne.fr
  organization: Le2i, Univ. de Bourgogne, Auxerre, France
BookMark eNpVkNtKAzEYhKNWsK19APFmXyBtjrvJZVk8FAoK6nX5m_yxkbS7bLZCfXoX7I1Xw8wHwzATMjo0ByTkjrM558wuVvXqdS7YYHWphdX2gsxsZbgSSlXWKnNJxkIaTo1W9uofE2pExlwLQZUx7IZMcv5ibOiSfEzeloVLkDPN2EIH25hif6JbyOiLPfa7xheh6Yr9MfVxsTu12OUWXd9BKuIePrFwTRr4d8xHSPEH-tgcbsl1gJRxdtYp-Xh8eK-f6frlaVUv1zTySvcUvPOBO--csIxvNSIrPQuuElIoxrwIBiqwwVey1MaDCyjFEKIRwTJTyim5_-uNiLhpu2FQd9qc_5G_OZJY2A
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2010.5652959
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781424479948
1424479940
1424479932
9781424479931
EISSN 2381-8549
EndPage 1324
ExternalDocumentID 5652959
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-adcdf1cdcc2901b5ee06d0fc7232400d2f8a7a9fd73658dacfe322f8e82f90863
IEDL.DBID RIE
ISBN 9781424479924
1424479924
ISSN 1522-4880
IngestDate Wed Jun 26 19:27:41 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-adcdf1cdcc2901b5ee06d0fc7232400d2f8a7a9fd73658dacfe322f8e82f90863
PageCount 4
ParticipantIDs ieee_primary_5652959
PublicationCentury 2000
PublicationDate 2010-Sept.
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-Sept.
PublicationDecade 2010
PublicationTitle 2010 IEEE International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0000527420
Score 1.8128728
Snippet In this paper, a new color visualization technique for multi- and hyperspectral images is proposed. This method is based on a maximization of the perceptual...
SourceID ieee
SourceType Publisher
StartPage 1321
SubjectTerms Color display
Human visual perception
Humans
Hyperspectral imaging
Image color analysis
Image segmentation
Jacobian matrices
Multi/hyperspectral imaging
Pixel
Segmentation
Visualization
Title A class-separability-based method for multi/hyperspectral image color visualization
URI https://ieeexplore.ieee.org/document/5652959
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoJ6YCLeJbHhgxtZMmsUdUWtEFVSpIbJU_zqIStKhpkfj3-Jw0CImFLcmSyHZ873zvvSPkWqoQhOTAMCckR0mOYkorwbyHATe5L4SJrRNmxeOLvB-hTc5No4UBgEg-g1u8jLV8t7JbPCrrB_CRqEy1SKtQstJqNecpPMOiI2-SLfSRiV6pIdnCRboTdRUqZBw7r6fdfV3uFFz1J8PJtGJ81W_71XYlRp1x53_fe0B6P_I9Om0C0yHZg-UR6dR4k9Z_c9klsztqETyzEtABPNJkvxjGNUerztI0QFoaOYf915CwVrrMtX6ji_ewD1F0vF7Tz0WJysxKz9kjz-PR0_CB1U0W2CIghw3TzjovrLMWK6omA-C5494WCLU4d4mXutDKuyINYMVp6yHsAV6CTLwK-VB6TNrL1RJOCBWQaJOJNIMwFd7nxuVOOuO9TANIzLNT0sUxmn9UPhrzenjO_n58TvarSj3yuS5Ie7PewiVplW57FWf-GzxQqNk
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ED3pCBeNve_BopWNsbY8GIRCRkICJN7K1r5FEwTAw8b-3rxszJl68bbts6dq-7_V93_cIuZHKBSHZTpkJJEdJjmIqUQGzFto8ja0IUt86YSJGL_KhizY5t6UWBgA8-Qzu8NLX8s1Sb_CorOnAR0tFqkJ2o7aIRa7WKk9UeIRlR16mW-gk491SXbqF03Qr6xLK5Rxbt6ftfVHwDLhqDjqDcc75Kt73q_GKjzu92v---IA0fgR8dFyGpkOyA4sjUisQJy3Wc1Ynk3uqET6zDNAD3BNlvxhGNkPz3tLUgVrqWYfNV5ey5srMVfJG5-9uJ6Loeb2in_MMtZm5orNBnnvdaafPijYLbO6ww5olRhsbaKM11lTTCIDHhlstEGxxblpWJiJR1ojQwRWTaAtuF7ASZMsqlxGFx6S6WC7ghNAAWkkaBWEE7ldYG6cmNtKk1srQwcQ4OiV1HKPZR-6kMSuG5-zvx9dkrz99Gs6Gg9HjOdnP6_bI7rog1fVqA5ekkpnNlZ8F31NZrCo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Image+Processing&rft.atitle=A+class-separability-based+method+for+multi%2Fhyperspectral+image+color+visualization&rft.au=Le+Moan%2C+S&rft.au=Mansouri%2C+A&rft.au=Hardeberg%2C+J+Y&rft.au=Voisin%2C+Y&rft.date=2010-09-01&rft.pub=IEEE&rft.isbn=9781424479924&rft.issn=1522-4880&rft.eissn=2381-8549&rft.spage=1321&rft.epage=1324&rft_id=info:doi/10.1109%2FICIP.2010.5652959&rft.externalDocID=5652959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon