Towards probabilistic identification of zero-day attack paths

Zero-day attacks continue to challenge the enterprise network security defense. A zero-day attack path is formed when a multi-step attack contains one or more zero-day exploits. Detecting zero-day attack paths in time could enable early disclosure of zero-day threats. In this paper, we propose a pro...

Full description

Saved in:
Bibliographic Details
Published in:2016 IEEE Conference on Communications and Network Security (CNS) pp. 64 - 72
Main Authors: Xiaoyan Sun, Jun Dai, Peng Liu, Singhal, Anoop, Yen, John
Format: Conference Proceeding
Language:English
Published: IEEE 01-10-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Zero-day attacks continue to challenge the enterprise network security defense. A zero-day attack path is formed when a multi-step attack contains one or more zero-day exploits. Detecting zero-day attack paths in time could enable early disclosure of zero-day threats. In this paper, we propose a probabilistic approach to identify zero-day attack paths and implement a prototype system named ZePro. An object instance graph is first built from system calls to capture the intrusion propagation. To further reveal the zero-day attack paths hiding in the instance graph, our system constructs an instance-graph-based Bayesian network. By leveraging intrusion evidence, the Bayesian network can quantitatively compute the probabilities of object instances being infected. The object instances with high infection probabilities reveal themselves and form the zero-day attack paths. The experiment results show that our system can effectively identify zero-day attack paths.
AbstractList Zero-day attacks continue to challenge the enterprise network security defense. A zero-day attack path is formed when a multi-step attack contains one or more zero-day exploits. Detecting zero-day attack paths in time could enable early disclosure of zero-day threats. In this paper, we propose a probabilistic approach to identify zero-day attack paths and implement a prototype system named ZePro. An object instance graph is first built from system calls to capture the intrusion propagation. To further reveal the zero-day attack paths hiding in the instance graph, our system constructs an instance-graph-based Bayesian network. By leveraging intrusion evidence, the Bayesian network can quantitatively compute the probabilities of object instances being infected. The object instances with high infection probabilities reveal themselves and form the zero-day attack paths. The experiment results show that our system can effectively identify zero-day attack paths.
Author Xiaoyan Sun
Yen, John
Peng Liu
Singhal, Anoop
Jun Dai
Author_xml – sequence: 1
  surname: Xiaoyan Sun
  fullname: Xiaoyan Sun
  email: xzs5052@ist.psu.edu
  organization: Pennsylvania State Univ., University Park, PA, USA
– sequence: 2
  surname: Jun Dai
  fullname: Jun Dai
  email: jun.dai@csus.edu
  organization: California State Univ., Sacramento, CA, USA
– sequence: 3
  surname: Peng Liu
  fullname: Peng Liu
  email: pliu@ist.psu.edu
  organization: Pennsylvania State Univ., University Park, PA, USA
– sequence: 4
  givenname: Anoop
  surname: Singhal
  fullname: Singhal, Anoop
  email: anoop.singhal@nist.gov
  organization: Nat. Inst. of Stand. & Technol., Gaithersburg, MD, USA
– sequence: 5
  givenname: John
  surname: Yen
  fullname: Yen, John
  email: jyen@ist.psu.edu
  organization: Pennsylvania State Univ., University Park, PA, USA
BookMark eNotz7tKBDEUgOEICuo6vWCTF5jxHDO5FRYyeINFC9d6ObkMRtfJMAnI-vQWbvV3H_zn7HjKU2TsEqFDBHs9vLx1N4Cq00ZBr_GINVYblGBBgJJ4yppSPgEArTJozBm73eQfWkLh85IdubRLpSbPU4hTTWPyVFOeeB75b1xyG2jPqVbyX3ym-lEu2MlIuxKbQ1fs_eF-Mzy169fH5-Fu3SbUsrZWa2WlNyQNuSCC0b1TkkQfR-MdKBDeCgQ0dlTWaCDdRyWCVi7YoIUSK3b176YY43Ze0jct--1hUvwBQ6xIiw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CNS.2016.7860471
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509030651
1509030654
EndPage 72
ExternalDocumentID 7860471
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-977695c8a58abd3d874b65a34ef8cb0603c9310189f69870a74e63d76bd9d7363
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:45 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-977695c8a58abd3d874b65a34ef8cb0603c9310189f69870a74e63d76bd9d7363
PageCount 9
ParticipantIDs ieee_primary_7860471
PublicationCentury 2000
PublicationDate 2016-Oct.
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-Oct.
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Communications and Network Security (CNS)
PublicationTitleAbbrev CNS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968188
Score 1.80372
Snippet Zero-day attacks continue to challenge the enterprise network security defense. A zero-day attack path is formed when a multi-step attack contains one or more...
SourceID ieee
SourceType Publisher
StartPage 64
SubjectTerms Bayes methods
Communication networks
Conferences
Feature extraction
Probabilistic logic
Security
Sockets
Title Towards probabilistic identification of zero-day attack paths
URI https://ieeexplore.ieee.org/document/7860471
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22J7340Yrf5ODRtNtmNx_n2tJTEargrSSZCRShK-32oL_end21VfDiLQRCYEJ4k8l7bxi7t9EnJhoQQwhOpIOhFm6gMhE8Ud4ztB5JOzyd69mreRyTTc7DTguDiBX5DHs0rP7yIQ9bKpX1tVFJSoLxlram1mrt6ylWldhjvn8iE9sfzeZE3VK9Ztmv_ikVfEyO_7fxCevudXj8aYcwp-wAV2fs6IeFYIdReZh0U5w6w1RuuWS8zJfQsICqwPM88k9c5wLcB3dF4cIbp1bEmy57mYyfR1PRtEQQyxLnC1Fma8pmwbjMOA8SjE69ypxMMZrgE5XIYCWZcNmobHkVnU5RSdDKgwUtlTxn7VW-wgvGoURmFaIOqY7lGw18mThoBy6BzCGawSXrUCAW77XrxaKJwdXf09fskGJd09xuWLtYb_GWtTawvavO6QsRRpRa
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aD-rFj1b8NgePpt12d_Nxri0VaxFawVtJMgkUoSvt7kF_vZnt2ip48RYCITAhvMnkvTeE3CpvIuklsA5YzZJ2RzDd5imzBinvqVPGoXZ4MBajV3nfQ5ucu7UWxjlXks9cE4flXz5ktsBSWUtIHiUoGN9JE8HFSq21qagoHtBHfv9FRqrVHY2RvMWb1cJfHVRKAOkf_G_rQ9LYKPHo8xpjjsiWmx-T_R8mgnWCBWJUTlHsDVP65aL1Mp1BxQMqQ08zTz_dImOgP6jOc23fKDYjXjbIS7836Q5Y1RSBzQLS5yzka1ylVupUagMxSJEYnuo4cV5aE_EotipGGy7luQqXUYvE8RgEN6BAxDw-IbV5NnenhELAZm69sInw4ZUGJqQOQoOOINXOyfYZqWMgpu8r34tpFYPzv6dvyO5g8jScDh9GjxdkD-O-Ir1dklq-KNwV2V5CcV2e2RcTIper
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Communications+and+Network+Security+%28CNS%29&rft.atitle=Towards+probabilistic+identification+of+zero-day+attack+paths&rft.au=Xiaoyan+Sun&rft.au=Jun+Dai&rft.au=Peng+Liu&rft.au=Singhal%2C+Anoop&rft.date=2016-10-01&rft.pub=IEEE&rft.spage=64&rft.epage=72&rft_id=info:doi/10.1109%2FCNS.2016.7860471&rft.externalDocID=7860471