Inverse Optimal Control with Regular Language Specifications

Given a description of system dynamics, input constraints, and a cost function, the problem of optimal control is to find a sequence of inputs and a state trajectory that minimizes the total cost. A related problem posed by Kalman in the 1960s, called the inverse problem of optimal control, is to de...

Full description

Saved in:
Bibliographic Details
Published in:2018 Annual American Control Conference (ACC) pp. 770 - 777
Main Authors: Papusha, Ivan, Min Wen, Topcu, Ufuk
Format: Conference Proceeding
Language:English
Published: AACC 01-06-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Given a description of system dynamics, input constraints, and a cost function, the problem of optimal control is to find a sequence of inputs and a state trajectory that minimizes the total cost. A related problem posed by Kalman in the 1960s, called the inverse problem of optimal control, is to determine the objective function given optimal inputs and state trajectories. In this work, we pose the inverse problem of optimal control under temporal behavior specifications. In our setting, we are given demonstrations of optimal trajectories of a finite transition system, which may come from an expert, simulation, or some other process. In addition to these demonstrations, we are also given extra side information that optimal trajectories must satisfy temporal behavior constraints, expressed as an automaton over the state labels. We explore the value of this temporal side information in imputing an approximately optimal policy from finitely many demonstrations, and give a gridworld example with an eye toward extending the framework to hybrid systems with continuous states.
AbstractList Given a description of system dynamics, input constraints, and a cost function, the problem of optimal control is to find a sequence of inputs and a state trajectory that minimizes the total cost. A related problem posed by Kalman in the 1960s, called the inverse problem of optimal control, is to determine the objective function given optimal inputs and state trajectories. In this work, we pose the inverse problem of optimal control under temporal behavior specifications. In our setting, we are given demonstrations of optimal trajectories of a finite transition system, which may come from an expert, simulation, or some other process. In addition to these demonstrations, we are also given extra side information that optimal trajectories must satisfy temporal behavior constraints, expressed as an automaton over the state labels. We explore the value of this temporal side information in imputing an approximately optimal policy from finitely many demonstrations, and give a gridworld example with an eye toward extending the framework to hybrid systems with continuous states.
Author Papusha, Ivan
Min Wen
Topcu, Ufuk
Author_xml – sequence: 1
  givenname: Ivan
  surname: Papusha
  fullname: Papusha, Ivan
  email: ipapusha@utexas.edu
  organization: Inst. for Comput. Eng. & Sci., Univ. of Texas, Austin, TX, USA
– sequence: 2
  surname: Min Wen
  fullname: Min Wen
  email: wenm@seas.upenn.edu
  organization: Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: Ufuk
  surname: Topcu
  fullname: Topcu, Ufuk
  email: utopcu@utexas.edu
  organization: Dept. of Aerosp. Eng. & Eng. Mech., Univ. of Texas, Austin, TX, USA
BookMark eNotj81KxDAURqMoOB19AHGTF2hNcpP0BtwMxdGBwoA_6yHTua2Rmpa2o_j2FpzVtzkczpewi9hFYuxWikyBk-5-VRSZEhIz1CCttmcskQbQGq0Qz9lCQY6pQSuvWDKOn0JI56xYsIdN_KZhJL7tp_DlW150cRq6lv-E6YO_UHNs_cBLH5ujb4i_9lSFOlR-Cl0cr9ll7duRbk67ZO_rx7fiOS23T5tiVaZB5mZK0ZMFIQwcULgKvM9r0mgPc6Y3-72sJABYMxNKGxSYW9CuqrUGpYG8gCW7-_cGItr1wxw6_O5OT-EPaGVH1Q
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.23919/ACC.2018.8431646
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538654288
9781538654286
EISSN 2378-5861
EndPage 777
ExternalDocumentID 8431646
Genre orig-research
GroupedDBID -~X
23M
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-8ae630053d809c3aa7fe486d646a5bb1c13336500524580876349cf443243ea03
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:14 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-8ae630053d809c3aa7fe486d646a5bb1c13336500524580876349cf443243ea03
PageCount 8
ParticipantIDs ieee_primary_8431646
PublicationCentury 2000
PublicationDate 2018-Jun.
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun.
PublicationDecade 2010
PublicationTitle 2018 Annual American Control Conference (ACC)
PublicationTitleAbbrev ACC
PublicationYear 2018
Publisher AACC
Publisher_xml – name: AACC
SSID ssj0019960
ssj0002684678
Score 1.7662277
Snippet Given a description of system dynamics, input constraints, and a cost function, the problem of optimal control is to find a sequence of inputs and a state...
SourceID ieee
SourceType Publisher
StartPage 770
SubjectTerms Automata
Convex functions
Cost function
Inverse problems
Optimal control
Task analysis
Trajectory
Title Inverse Optimal Control with Regular Language Specifications
URI https://ieeexplore.ieee.org/document/8431646
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sT3rx0YpvcvBo-kiyuwl4kbWlB1HxAd5KsjsBQdvSx_83k11bBS9elmVZljCBnck3830fwKX2UqAXKVehGOXkh8SdFoaLviuNs0JJJKLw6Dm7f9O3A5LJuVpzYRAxDp9hh25jL7-cFiuCyrqaeNsqbUAjM7riaq3xFFItSbNNB4FUR6ouppCmb7o3eU6DXLpTf-SXm0pMJsPd_y1jD9obVh57XOebfdjCyQHs_BAUbME1yWbMF8gewp_g036wvJpEZwS3sqfoOz9ndzVGyaL5vP9G7drwOhy85CNe-yPw95D0l1xbJMGsRJa6ZwppbeZR6bQMa7OJc_0inD9lqMB6iVCJjtpzyhRekQifRNuTh9CcTCd4BMzJzHsXzkI6zcI7qUnCVkkRrmVhQkV5DC2Kw3hWSWCM6xCc_P34FLYp1NVE1Rk0l_MVnkNjUa4u4qZ9AXillJA
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sPagXH634NgePpo8ku0nAi6wtFWsVreCtJLsJCNpKH__fzO7aKnjxsizLsoQJ7Ey-me_7AC6U58x5FlMRilGKfkjUKqYpa9tMW8MEd0gU7j3Lwau66aBMzuWSC-Ocy4fPXANv815-NkkXCJU1FfK2RVyB9UjIWBZsrSWigrolsVz1EFB3pOhjMq7bunmdJDjKpRrlZ375qeTppLv9v4XsQH3FyyOPy4yzC2tuvAdbPyQFa3CFwhnTmSMP4V_wYd5JUsyiEwRcyVPuPD8l_RKlJLn9vP_G7erw0u0Mkx4tHRLoW0j7c6qMQ8msiGeqpVNujPROqDgLazORte00nEB5qMFaERORytXnhE69QBk-7kyL70N1PBm7AyCWS-9tOA2pWIZ3Yh2FzeIsXLNUh5ryEGoYh9FnIYIxKkNw9Pfjc9joDe_7o_7t4O4YNjHsxXzVCVTn04U7hcosW5zlG_gFgIKX4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+Annual+American+Control+Conference+%28ACC%29&rft.atitle=Inverse+Optimal+Control+with+Regular+Language+Specifications&rft.au=Papusha%2C+Ivan&rft.au=Min+Wen&rft.au=Topcu%2C+Ufuk&rft.date=2018-06-01&rft.pub=AACC&rft.eissn=2378-5861&rft.spage=770&rft.epage=777&rft_id=info:doi/10.23919%2FACC.2018.8431646&rft.externalDocID=8431646