Inverse Optimal Control with Regular Language Specifications
Given a description of system dynamics, input constraints, and a cost function, the problem of optimal control is to find a sequence of inputs and a state trajectory that minimizes the total cost. A related problem posed by Kalman in the 1960s, called the inverse problem of optimal control, is to de...
Saved in:
Published in: | 2018 Annual American Control Conference (ACC) pp. 770 - 777 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
AACC
01-06-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Given a description of system dynamics, input constraints, and a cost function, the problem of optimal control is to find a sequence of inputs and a state trajectory that minimizes the total cost. A related problem posed by Kalman in the 1960s, called the inverse problem of optimal control, is to determine the objective function given optimal inputs and state trajectories. In this work, we pose the inverse problem of optimal control under temporal behavior specifications. In our setting, we are given demonstrations of optimal trajectories of a finite transition system, which may come from an expert, simulation, or some other process. In addition to these demonstrations, we are also given extra side information that optimal trajectories must satisfy temporal behavior constraints, expressed as an automaton over the state labels. We explore the value of this temporal side information in imputing an approximately optimal policy from finitely many demonstrations, and give a gridworld example with an eye toward extending the framework to hybrid systems with continuous states. |
---|---|
AbstractList | Given a description of system dynamics, input constraints, and a cost function, the problem of optimal control is to find a sequence of inputs and a state trajectory that minimizes the total cost. A related problem posed by Kalman in the 1960s, called the inverse problem of optimal control, is to determine the objective function given optimal inputs and state trajectories. In this work, we pose the inverse problem of optimal control under temporal behavior specifications. In our setting, we are given demonstrations of optimal trajectories of a finite transition system, which may come from an expert, simulation, or some other process. In addition to these demonstrations, we are also given extra side information that optimal trajectories must satisfy temporal behavior constraints, expressed as an automaton over the state labels. We explore the value of this temporal side information in imputing an approximately optimal policy from finitely many demonstrations, and give a gridworld example with an eye toward extending the framework to hybrid systems with continuous states. |
Author | Papusha, Ivan Min Wen Topcu, Ufuk |
Author_xml | – sequence: 1 givenname: Ivan surname: Papusha fullname: Papusha, Ivan email: ipapusha@utexas.edu organization: Inst. for Comput. Eng. & Sci., Univ. of Texas, Austin, TX, USA – sequence: 2 surname: Min Wen fullname: Min Wen email: wenm@seas.upenn.edu organization: Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA – sequence: 3 givenname: Ufuk surname: Topcu fullname: Topcu, Ufuk email: utopcu@utexas.edu organization: Dept. of Aerosp. Eng. & Eng. Mech., Univ. of Texas, Austin, TX, USA |
BookMark | eNotj81KxDAURqMoOB19AHGTF2hNcpP0BtwMxdGBwoA_6yHTua2Rmpa2o_j2FpzVtzkczpewi9hFYuxWikyBk-5-VRSZEhIz1CCttmcskQbQGq0Qz9lCQY6pQSuvWDKOn0JI56xYsIdN_KZhJL7tp_DlW150cRq6lv-E6YO_UHNs_cBLH5ujb4i_9lSFOlR-Cl0cr9ll7duRbk67ZO_rx7fiOS23T5tiVaZB5mZK0ZMFIQwcULgKvM9r0mgPc6Y3-72sJABYMxNKGxSYW9CuqrUGpYG8gCW7-_cGItr1wxw6_O5OT-EPaGVH1Q |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.23919/ACC.2018.8431646 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1538654288 9781538654286 |
EISSN | 2378-5861 |
EndPage | 777 |
ExternalDocumentID | 8431646 |
Genre | orig-research |
GroupedDBID | -~X 23M 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ACGFS ADZIZ AFFNX ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-8ae630053d809c3aa7fe486d646a5bb1c13336500524580876349cf443243ea03 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:14 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-8ae630053d809c3aa7fe486d646a5bb1c13336500524580876349cf443243ea03 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8431646 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun. |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun. |
PublicationDecade | 2010 |
PublicationTitle | 2018 Annual American Control Conference (ACC) |
PublicationTitleAbbrev | ACC |
PublicationYear | 2018 |
Publisher | AACC |
Publisher_xml | – name: AACC |
SSID | ssj0019960 ssj0002684678 |
Score | 1.7662277 |
Snippet | Given a description of system dynamics, input constraints, and a cost function, the problem of optimal control is to find a sequence of inputs and a state... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 770 |
SubjectTerms | Automata Convex functions Cost function Inverse problems Optimal control Task analysis Trajectory |
Title | Inverse Optimal Control with Regular Language Specifications |
URI | https://ieeexplore.ieee.org/document/8431646 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sT3rx0YpvcvBo-kiyuwl4kbWlB1HxAd5KsjsBQdvSx_83k11bBS9elmVZljCBnck3830fwKX2UqAXKVehGOXkh8SdFoaLviuNs0JJJKLw6Dm7f9O3A5LJuVpzYRAxDp9hh25jL7-cFiuCyrqaeNsqbUAjM7riaq3xFFItSbNNB4FUR6ouppCmb7o3eU6DXLpTf-SXm0pMJsPd_y1jD9obVh57XOebfdjCyQHs_BAUbME1yWbMF8gewp_g036wvJpEZwS3sqfoOz9ndzVGyaL5vP9G7drwOhy85CNe-yPw95D0l1xbJMGsRJa6ZwppbeZR6bQMa7OJc_0inD9lqMB6iVCJjtpzyhRekQifRNuTh9CcTCd4BMzJzHsXzkI6zcI7qUnCVkkRrmVhQkV5DC2Kw3hWSWCM6xCc_P34FLYp1NVE1Rk0l_MVnkNjUa4u4qZ9AXillJA |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5sPagXH634NgePpo8ku0nAi6wtFWsVreCtJLsJCNpKH__fzO7aKnjxsizLsoQJ7Ey-me_7AC6U58x5FlMRilGKfkjUKqYpa9tMW8MEd0gU7j3Lwau66aBMzuWSC-Ocy4fPXANv815-NkkXCJU1FfK2RVyB9UjIWBZsrSWigrolsVz1EFB3pOhjMq7bunmdJDjKpRrlZ375qeTppLv9v4XsQH3FyyOPy4yzC2tuvAdbPyQFa3CFwhnTmSMP4V_wYd5JUsyiEwRcyVPuPD8l_RKlJLn9vP_G7erw0u0Mkx4tHRLoW0j7c6qMQ8msiGeqpVNujPROqDgLazORte00nEB5qMFaERORytXnhE69QBk-7kyL70N1PBm7AyCWS-9tOA2pWIZ3Yh2FzeIsXLNUh5ryEGoYh9FnIYIxKkNw9Pfjc9joDe_7o_7t4O4YNjHsxXzVCVTn04U7hcosW5zlG_gFgIKX4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+Annual+American+Control+Conference+%28ACC%29&rft.atitle=Inverse+Optimal+Control+with+Regular+Language+Specifications&rft.au=Papusha%2C+Ivan&rft.au=Min+Wen&rft.au=Topcu%2C+Ufuk&rft.date=2018-06-01&rft.pub=AACC&rft.eissn=2378-5861&rft.spage=770&rft.epage=777&rft_id=info:doi/10.23919%2FACC.2018.8431646&rft.externalDocID=8431646 |