Automatic Optic Disc Localization Using Particle Swarm Optimization Technique
There is a growing need for plenarily automated algorithms that expeditiously localize the optic disc region in retinal fundus images for the analysis of retinal pathologies such as glaucoma. In this paper, we propose a methodology based on particle swarm optimization for automatic localization of o...
Saved in:
Published in: | TENCON 2018 - 2018 IEEE Region 10 Conference pp. 1718 - 1722 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-10-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | There is a growing need for plenarily automated algorithms that expeditiously localize the optic disc region in retinal fundus images for the analysis of retinal pathologies such as glaucoma. In this paper, we propose a methodology based on particle swarm optimization for automatic localization of optic disc region from retinal fundus images, where minimization of the fitness function is utilized to resolve optimization quandaries. Here, kernels are modeled as particles and they test the region-of-interest based on the fitness function, in the respective databases, where it is likely that the optic disc exists. The proposed method is validated on a total of 1670 fundus images obtained from various publicly available fundus image datasets. The optic disc localization accuracy obtained by the proposed method are 100%, 98.01%, 96.15%, 98.87%, 100%, and 100% on DRIVE, DRISHTI-GS, DIARETDB0, DIARETDB1, DRIONS-DB, and MESSIDOR fundus image databases, respectively. The precision of localization was improved with initialization of kernel particles within bright region-of-interest in fundus images. |
---|---|
AbstractList | There is a growing need for plenarily automated algorithms that expeditiously localize the optic disc region in retinal fundus images for the analysis of retinal pathologies such as glaucoma. In this paper, we propose a methodology based on particle swarm optimization for automatic localization of optic disc region from retinal fundus images, where minimization of the fitness function is utilized to resolve optimization quandaries. Here, kernels are modeled as particles and they test the region-of-interest based on the fitness function, in the respective databases, where it is likely that the optic disc exists. The proposed method is validated on a total of 1670 fundus images obtained from various publicly available fundus image datasets. The optic disc localization accuracy obtained by the proposed method are 100%, 98.01%, 96.15%, 98.87%, 100%, and 100% on DRIVE, DRISHTI-GS, DIARETDB0, DIARETDB1, DRIONS-DB, and MESSIDOR fundus image databases, respectively. The precision of localization was improved with initialization of kernel particles within bright region-of-interest in fundus images. |
Author | Harsha, S. Harish Kumar, J. R. Subramanya Jois, S. P. |
Author_xml | – sequence: 1 givenname: S. P. surname: Subramanya Jois fullname: Subramanya Jois, S. P. organization: Department of Electrical Engineering, Indian Institute of Science, Bangalore, India – sequence: 2 givenname: S. surname: Harsha fullname: Harsha, S. organization: Department of Electrical Engineering, Indian Institute of Science, Bangalore, India – sequence: 3 givenname: J. R. surname: Harish Kumar fullname: Harish Kumar, J. R. organization: Department of Electrical Engineering, Indian Institute of Science, Bangalore, India |
BookMark | eNo1T9lKw0AUHUXBtvYL-pIfSJx9eSy1ViE2gulzmUzu6EiWmqSIfr1R63k4l7Nw4UzRRdM2gNCC4IQQbG7y9XaVbROKiU60FBgLdoamRLBRcKHIOZpQIkzMuMBXaN73b3iExBRrNUGPy-PQ1nYILsoOP3wbehelrbNV-Brttol2fWheoifbjXEF0fOH7erfcv3fyMG9NuH9CNfo0tuqh_npztDubp2v7uM02zyslmkciBJDrI22UkIJJfEeRMEZOKWBMwpKU0m5dF5zXlAAbzAtCm-8UVYoWTrFMWUztPj7GwBgf-hCbbvP_Wk9-wY9BFFS |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/TENCON.2018.8650053 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1538654571 9781538654576 |
EISSN | 2159-3450 |
EndPage | 1722 |
ExternalDocumentID | 8650053 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM AAJGR ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS CBEJK CHZPO IPLJI M43 OCL RIE RIO |
ID | FETCH-LOGICAL-i175t-898a66eded1ffe5b43ec78e432e7826246cf844b2eef902bbf9f97a576dc74023 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:26 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-898a66eded1ffe5b43ec78e432e7826246cf844b2eef902bbf9f97a576dc74023 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8650053 |
PublicationCentury | 2000 |
PublicationDate | 2018-Oct. |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
PublicationDecade | 2010 |
PublicationTitle | TENCON 2018 - 2018 IEEE Region 10 Conference |
PublicationTitleAbbrev | TENCON |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000602087 |
Score | 1.7400804 |
Snippet | There is a growing need for plenarily automated algorithms that expeditiously localize the optic disc region in retinal fundus images for the analysis of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1718 |
SubjectTerms | Blood vessels Entropy fundus image glaucoma Image color analysis Image resolution Kernel localization Optic disc Optical imaging particle swarm optimization Retina |
Title | Automatic Optic Disc Localization Using Particle Swarm Optimization Technique |
URI | https://ieeexplore.ieee.org/document/8650053 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6qp57aoqVvcuixq7ubNY9jqYqH1gpa6E12kwl48IHu0r_fSVwthV56CSEkBCYJX75k5huAR1pWTlSaznduVER46yVvhY6kNsQnRCFtIIqjqRx_qv7Ay-Q8HWNhEDE4n2HHV8Nfvl2byj-VdRVdJ2jTNKAhtdrHah3fU2Lh003KWlgoiXV3NiBaPPbeW6pTj_yVQiUgyPDsf3OfQ_snFI9NjiBzASe4asHbc1Wug9Yqe9_4sr_YGfbqYakOq2TBFYBN6o3Bpl_5dhk6Lw89Zgf11jZ8DAezl1FU50WIFgT2ZaS0yoVAizZxDntFxtFIhRlPkfBepJkwTmVZkSI6HadF4bTTMidmYY0kvsgvoblar_AKWGJiaVLkIjY80xaVw0QJThwqcaqIe9fQ8qaYb_bSF_PaCjd_N9_Cqbf23tftDprltsJ7aOxs9RAW6xtjq5Tc |
link.rule.ids | 310,311,782,786,791,792,798,23941,23942,25151,27936,54770 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ED3pSA0bx1YNHF7rb0sfRCAQjIAlr4o3sttOEA48AG_--bVkwJl68NE3Tpsm0zdevnfkGoUe3rNRRaXe-My0jh7de8parSCjt-ATPhQlEsT8Ro0_Z6XqZnKdDLAwABOczaPpq-Ms3S134p7KWdNcJt2kq6LjNhCC7aK3DiwrhPuGkKKWFYqJaadcR45H335LNcuyvJCoBQ3pn_5v9HNV_gvHw-AAzF-gIFjU0fC62y6C2it9XvuzMNhoPPDCVgZU4OAPgcbk18OQrW89D5_m-R7rXb62jj143felHZWaEaObgfhtJJTPOwYCJrYV2zihoIYHRBBzi84RxbSVjeQJgFUny3CqrROa4hdHCMUZ6iaqL5QKuEI41EToByommTBmQFmLJqWNRsZU5aV-jmjfFdLUTv5iWVmj83fyATvrpcDAdvI7ebtCpt_zO8-0WVbfrAu5QZWOK-7Bw31-jmCc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=TENCON+2018+-+2018+IEEE+Region+10+Conference&rft.atitle=Automatic+Optic+Disc+Localization+Using+Particle+Swarm+Optimization+Technique&rft.au=Subramanya+Jois%2C+S.+P.&rft.au=Harsha%2C+S.&rft.au=Harish+Kumar%2C+J.+R.&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2159-3450&rft.spage=1718&rft.epage=1722&rft_id=info:doi/10.1109%2FTENCON.2018.8650053&rft.externalDocID=8650053 |