Automatic Optic Disc Localization Using Particle Swarm Optimization Technique

There is a growing need for plenarily automated algorithms that expeditiously localize the optic disc region in retinal fundus images for the analysis of retinal pathologies such as glaucoma. In this paper, we propose a methodology based on particle swarm optimization for automatic localization of o...

Full description

Saved in:
Bibliographic Details
Published in:TENCON 2018 - 2018 IEEE Region 10 Conference pp. 1718 - 1722
Main Authors: Subramanya Jois, S. P., Harsha, S., Harish Kumar, J. R.
Format: Conference Proceeding
Language:English
Published: IEEE 01-10-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract There is a growing need for plenarily automated algorithms that expeditiously localize the optic disc region in retinal fundus images for the analysis of retinal pathologies such as glaucoma. In this paper, we propose a methodology based on particle swarm optimization for automatic localization of optic disc region from retinal fundus images, where minimization of the fitness function is utilized to resolve optimization quandaries. Here, kernels are modeled as particles and they test the region-of-interest based on the fitness function, in the respective databases, where it is likely that the optic disc exists. The proposed method is validated on a total of 1670 fundus images obtained from various publicly available fundus image datasets. The optic disc localization accuracy obtained by the proposed method are 100%, 98.01%, 96.15%, 98.87%, 100%, and 100% on DRIVE, DRISHTI-GS, DIARETDB0, DIARETDB1, DRIONS-DB, and MESSIDOR fundus image databases, respectively. The precision of localization was improved with initialization of kernel particles within bright region-of-interest in fundus images.
AbstractList There is a growing need for plenarily automated algorithms that expeditiously localize the optic disc region in retinal fundus images for the analysis of retinal pathologies such as glaucoma. In this paper, we propose a methodology based on particle swarm optimization for automatic localization of optic disc region from retinal fundus images, where minimization of the fitness function is utilized to resolve optimization quandaries. Here, kernels are modeled as particles and they test the region-of-interest based on the fitness function, in the respective databases, where it is likely that the optic disc exists. The proposed method is validated on a total of 1670 fundus images obtained from various publicly available fundus image datasets. The optic disc localization accuracy obtained by the proposed method are 100%, 98.01%, 96.15%, 98.87%, 100%, and 100% on DRIVE, DRISHTI-GS, DIARETDB0, DIARETDB1, DRIONS-DB, and MESSIDOR fundus image databases, respectively. The precision of localization was improved with initialization of kernel particles within bright region-of-interest in fundus images.
Author Harsha, S.
Harish Kumar, J. R.
Subramanya Jois, S. P.
Author_xml – sequence: 1
  givenname: S. P.
  surname: Subramanya Jois
  fullname: Subramanya Jois, S. P.
  organization: Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
– sequence: 2
  givenname: S.
  surname: Harsha
  fullname: Harsha, S.
  organization: Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
– sequence: 3
  givenname: J. R.
  surname: Harish Kumar
  fullname: Harish Kumar, J. R.
  organization: Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
BookMark eNo1T9lKw0AUHUXBtvYL-pIfSJx9eSy1ViE2gulzmUzu6EiWmqSIfr1R63k4l7Nw4UzRRdM2gNCC4IQQbG7y9XaVbROKiU60FBgLdoamRLBRcKHIOZpQIkzMuMBXaN73b3iExBRrNUGPy-PQ1nYILsoOP3wbehelrbNV-Brttol2fWheoifbjXEF0fOH7erfcv3fyMG9NuH9CNfo0tuqh_npztDubp2v7uM02zyslmkciBJDrI22UkIJJfEeRMEZOKWBMwpKU0m5dF5zXlAAbzAtCm-8UVYoWTrFMWUztPj7GwBgf-hCbbvP_Wk9-wY9BFFS
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/TENCON.2018.8650053
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538654571
9781538654576
EISSN 2159-3450
EndPage 1722
ExternalDocumentID 8650053
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
AAJGR
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIO
ID FETCH-LOGICAL-i175t-898a66eded1ffe5b43ec78e432e7826246cf844b2eef902bbf9f97a576dc74023
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:26 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-898a66eded1ffe5b43ec78e432e7826246cf844b2eef902bbf9f97a576dc74023
PageCount 5
ParticipantIDs ieee_primary_8650053
PublicationCentury 2000
PublicationDate 2018-Oct.
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationTitle TENCON 2018 - 2018 IEEE Region 10 Conference
PublicationTitleAbbrev TENCON
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000602087
Score 1.7400804
Snippet There is a growing need for plenarily automated algorithms that expeditiously localize the optic disc region in retinal fundus images for the analysis of...
SourceID ieee
SourceType Publisher
StartPage 1718
SubjectTerms Blood vessels
Entropy
fundus image
glaucoma
Image color analysis
Image resolution
Kernel
localization
Optic disc
Optical imaging
particle swarm optimization
Retina
Title Automatic Optic Disc Localization Using Particle Swarm Optimization Technique
URI https://ieeexplore.ieee.org/document/8650053
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6qp57aoqVvcuixq7ubNY9jqYqH1gpa6E12kwl48IHu0r_fSVwthV56CSEkBCYJX75k5huAR1pWTlSaznduVER46yVvhY6kNsQnRCFtIIqjqRx_qv7Ay-Q8HWNhEDE4n2HHV8Nfvl2byj-VdRVdJ2jTNKAhtdrHah3fU2Lh003KWlgoiXV3NiBaPPbeW6pTj_yVQiUgyPDsf3OfQ_snFI9NjiBzASe4asHbc1Wug9Yqe9_4sr_YGfbqYakOq2TBFYBN6o3Bpl_5dhk6Lw89Zgf11jZ8DAezl1FU50WIFgT2ZaS0yoVAizZxDntFxtFIhRlPkfBepJkwTmVZkSI6HadF4bTTMidmYY0kvsgvoblar_AKWGJiaVLkIjY80xaVw0QJThwqcaqIe9fQ8qaYb_bSF_PaCjd_N9_Cqbf23tftDprltsJ7aOxs9RAW6xtjq5Tc
link.rule.ids 310,311,782,786,791,792,798,23941,23942,25151,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ED3pSA0bx1YNHF7rb0sfRCAQjIAlr4o3sttOEA48AG_--bVkwJl68NE3Tpsm0zdevnfkGoUe3rNRRaXe-My0jh7de8parSCjt-ATPhQlEsT8Ro0_Z6XqZnKdDLAwABOczaPpq-Ms3S134p7KWdNcJt2kq6LjNhCC7aK3DiwrhPuGkKKWFYqJaadcR45H335LNcuyvJCoBQ3pn_5v9HNV_gvHw-AAzF-gIFjU0fC62y6C2it9XvuzMNhoPPDCVgZU4OAPgcbk18OQrW89D5_m-R7rXb62jj143felHZWaEaObgfhtJJTPOwYCJrYV2zihoIYHRBBzi84RxbSVjeQJgFUny3CqrROa4hdHCMUZ6iaqL5QKuEI41EToByommTBmQFmLJqWNRsZU5aV-jmjfFdLUTv5iWVmj83fyATvrpcDAdvI7ebtCpt_zO8-0WVbfrAu5QZWOK-7Bw31-jmCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=TENCON+2018+-+2018+IEEE+Region+10+Conference&rft.atitle=Automatic+Optic+Disc+Localization+Using+Particle+Swarm+Optimization+Technique&rft.au=Subramanya+Jois%2C+S.+P.&rft.au=Harsha%2C+S.&rft.au=Harish+Kumar%2C+J.+R.&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2159-3450&rft.spage=1718&rft.epage=1722&rft_id=info:doi/10.1109%2FTENCON.2018.8650053&rft.externalDocID=8650053