Evolutionary techniques for complex objects clustering

The article presents the evolution technologies for clustering objects, specified by their characteristics values. The genetic algorithms and evolution strategies elements, underlying them, allow to solve clustering problems with minimal constraints on the initial data. The experiments results are g...

Full description

Saved in:
Bibliographic Details
Published in:2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD) pp. 270 - 273
Main Authors: Snytyuk, V. Y., Suprun, O. O.
Format: Conference Proceeding
Language:English
Published: IEEE 01-10-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The article presents the evolution technologies for clustering objects, specified by their characteristics values. The genetic algorithms and evolution strategies elements, underlying them, allow to solve clustering problems with minimal constraints on the initial data. The experiments results are given, which proof the effectiveness of the proposed methods.
AbstractList The article presents the evolution technologies for clustering objects, specified by their characteristics values. The genetic algorithms and evolution strategies elements, underlying them, allow to solve clustering problems with minimal constraints on the initial data. The experiments results are given, which proof the effectiveness of the proposed methods.
Author Suprun, O. O.
Snytyuk, V. Y.
Author_xml – sequence: 1
  givenname: V. Y.
  surname: Snytyuk
  fullname: Snytyuk, V. Y.
  organization: Intellectual and Information Systems Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
– sequence: 2
  givenname: O. O.
  surname: Suprun
  fullname: Suprun, O. O.
  organization: Institute of Mathematical Machines and Systems Problems, NASU Kyiv, Ukraine
BookMark eNotj0FOwzAQAI0EErT0Bb3kAwm7dr12jlEpFKkSHCjXynZtcJXGJU4Q_B4keprbaGbCLrvUecbmCBUi1HfNy7Z5u684oKq0AK25umATlEITalR0zWY5HwCAc6qlUDeMVl-pHYeYOtP_FIN3H138HH0uQuoLl46n1n8XyR68G3Lh2jEPvo_d-y27CqbNfnbmlG0fVq_Ldbl5fnxaNpsyopJDqSRY2IMRUlhOQZCxXAdnXFgErIm0cpLAB-RSctoTl8YIDHphra2dcGLK5v_e6L3fnfp4_MvcndfEL5W8R2U
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APUAVD.2017.8308827
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
Statistics
EISBN 1538618176
9781538618172
9781538618158
153861815X
EndPage 273
ExternalDocumentID 8308827
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-750b0d0a353b26f36ab28fcacf4f196687c560ef125526d625aa31f84bbb9c3c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:32 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-750b0d0a353b26f36ab28fcacf4f196687c560ef125526d625aa31f84bbb9c3c3
PageCount 4
ParticipantIDs ieee_primary_8308827
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle 2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)
PublicationTitleAbbrev APUAVD
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002269537
Score 1.7176774
Snippet The article presents the evolution technologies for clustering objects, specified by their characteristics values. The genetic algorithms and evolution...
SourceID ieee
SourceType Publisher
StartPage 270
SubjectTerms Clustering algorithms
Clustering methods
clustering problem
complex objects
Conferences
evolution strategies
evolution technologies
Genetic algorithms
Iris
Sociology
Statistics
Title Evolutionary techniques for complex objects clustering
URI https://ieeexplore.ieee.org/document/8308827
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1sTz2pbaV-koN4cttNs5tkj8W2eLEUtOKt5BME2ZVuV_Tfm2SXFcGLtxASApOE9zKZeQNwHSdYCGtspExKogRLHHGFldsQwgwVHiNCEdtHtnrh84WXybltc2GMMSH4zIx9M_zl60JV3lU24cQTQtaBDst4navV-lMcjchSwhphIRxnk9l6M3ue--gtNm5m_iqhEhBkefi_tY9g-JOKh9YtyBzDgcn7MHoI2tq7L3SDVsKdFdRc0T70PHusxZcHQBcfzcnyY1u51hI5popCMLn5RIX0rpgSqbfKiya4VYawWS6e7u6jplBC9OrQfx851JexjgVJiZxSS6iQU26VUDax7oZRzpQjNsY6MpNOqXZPHiEItjyRUmaKKHIC3bzIzQhQLKymMdMaC5mkmc9MNe7RkljHEwlL9SkMvG2277UWxrYxy9nf3efQ8-avg98uoLvfVeYSOqWursLufQONqJtE
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1sPdiT2lbqdw7iyW03zSbZPRbbUrEtBVvxVvIJgrTSdkX_vcnusiJ48RZCQiCT8F4mM28AbsIIC2GNDZShJIiwxEGssHIGIdww4TEiK2L7xKcvcX_gZXLuylwYY0wWfGbavpn95eu1Sr2rrBMTTwh5BfZpxBnPs7VKj4ojEgklvJAWwmHS6c0Wvee-j9_i7WLuryIqGYYMD_-3-hE0f5Lx0KyEmWPYM6s6tCaZuvbmC92iqXCnBRWXtA41zx9z-eUGsMFHcbb82FKwdYscV0VZOLn5RGvpnTFbpN5SL5vgVmnCYjiY34-ColRC8Orwfxc43JehDgWhRHaZJUzIbmyVUDay7o6xmCtHbYx1dIZ2mXaPHiEItnEkpUwUUeQEqqv1yrQAhcJqFnKtsZARTXxuqnHPlsg6pkg41afQ8HuzfM_VMJbFtpz93X0NB6P5ZLwcP0wfz6HmTZGHwl1AdbdJzSVUtjq9yiz5DerOnpU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+4th+International+Conference+Actual+Problems+of+Unmanned+Aerial+Vehicles+Developments+%28APUAVD%29&rft.atitle=Evolutionary+techniques+for+complex+objects+clustering&rft.au=Snytyuk%2C+V.+Y.&rft.au=Suprun%2C+O.+O.&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=270&rft.epage=273&rft_id=info:doi/10.1109%2FAPUAVD.2017.8308827&rft.externalDocID=8308827