A Novel Feature Extraction for American Sign Language Recognition Using Webcam
Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator's opinion. This paper introduces a simple and efficient algorithm for feature extraction to recognize American Sign Language alphabets from both static and dynamic gestures. T...
Saved in:
Published in: | 2018 11th Biomedical Engineering International Conference (BMEiCON) pp. 1 - 5 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-11-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator's opinion. This paper introduces a simple and efficient algorithm for feature extraction to recognize American Sign Language alphabets from both static and dynamic gestures. The proposed algorithm comprises of four different techniques: Number of white pixels at the edge of the image (NwE), Finger length from the centroid point (Fcen), Angles between fingers (AngF) and Differences of angles between fingers of the first and last frame (delAng). After extracting features from video images, an Artificial Neural Network (ANN) is used to classify the signs. The result of these experiments is achieved up to 95% recognition rate, which is clearly to be the highest accuracy comparing with the other research worked in this field. |
---|---|
AbstractList | Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator's opinion. This paper introduces a simple and efficient algorithm for feature extraction to recognize American Sign Language alphabets from both static and dynamic gestures. The proposed algorithm comprises of four different techniques: Number of white pixels at the edge of the image (NwE), Finger length from the centroid point (Fcen), Angles between fingers (AngF) and Differences of angles between fingers of the first and last frame (delAng). After extracting features from video images, an Artificial Neural Network (ANN) is used to classify the signs. The result of these experiments is achieved up to 95% recognition rate, which is clearly to be the highest accuracy comparing with the other research worked in this field. |
Author | Pinsanoh, Onamon Kitjaidure, Yuttana Thongtawee, Ariya |
Author_xml | – sequence: 1 givenname: Ariya surname: Thongtawee fullname: Thongtawee, Ariya organization: Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand – sequence: 2 givenname: Onamon surname: Pinsanoh fullname: Pinsanoh, Onamon organization: Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand – sequence: 3 givenname: Yuttana surname: Kitjaidure fullname: Kitjaidure, Yuttana organization: Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand |
BookMark | eNotj9FKwzAUQCMoqLNfoA_5gc2bJr1JHmvZpjA3UIePI0lvS2RLpe1E_17QPZ2Xw4Fzzc5Tl4ixOwEzIcDePzzPY7VZz3IQZmYQrJXyjGVWG1FIg4XOlb1k2TB8AECORgltr9i65Ovui_Z8QW489sTn32Pvwhi7xJuu5-WB-hhc4q-xTXzlUnt0LfEXCl2b4p-2HWJq-Tv54A437KJx-4GyEydsu5i_VY_T1Wb5VJWraRS6GKeIyjuPgFBrV5MKAA0a44O3zpnCFlpiLY3IqdbgfWFAeYUNeqECITZywm7_u5GIdp99PLj-Z3e6lr_d_k-z |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BMEiCON.2018.8609933 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538657249 1538657244 |
EndPage | 5 |
ExternalDocumentID | 8609933 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-664bab6060d7ade4c00f688bcb9aa8595736d3812ed70bb5804b46f6b14ce66f3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:37 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-664bab6060d7ade4c00f688bcb9aa8595736d3812ed70bb5804b46f6b14ce66f3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8609933 |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov. |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2018 11th Biomedical Engineering International Conference (BMEiCON) |
PublicationTitleAbbrev | BMEiCON |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002684179 |
Score | 1.7564652 |
Snippet | Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator's opinion. This paper introduces a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | American Sign Language (ASL) Artificial Neural Network Assistive technology Feature extraction Gesture recognition Hand gesture recognition Heuristic algorithms Image edge detection Thumb Webcam |
Title | A Novel Feature Extraction for American Sign Language Recognition Using Webcam |
URI | https://ieeexplore.ieee.org/document/8609933 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64nTypbOJvcvBot7TNkvSos2MHreIUvY2meZGCdmOu4p9v0nYVwYuHQAgJgZe038vL970AnNvvh6GvtBdo-wtkgZaeDIzw0IyyDLnDNBfTnc5E8iKvY5cm56LVwiBiRT7DgatWd_l6kZUuVDaU3PozYdiBjohkrdVq4ykua4ndXI06zqfR8Oo2zsd3iaNvyUEz9NcbKhWETHb-N_ku9H-0eOS-RZk92MKiB8klSRaf-EacB1eukMRf61UtUSDWCyWbexgyy18LctPEJMnDhi1ku1VcAfLsWErvfXiaxI_jqde8jODlFu7XHudMpcqePagWqUaWUWq4lCpTUZq6jGUi5NpicYBaUKVGkjLFuOHKZ3YBuAn3oVssCjwAogTDETOKB9J20SIymc90GAa2pNTIQ-g5W8yXdfKLeWOGo7-bj2HbmbsW651Ad70q8RQ6H7o8q5brG0xqlgw |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64edCTyib-NgePduuPNMmOOjsmblXcRG-jaV7GQDuZq_jnm7TdRPDiIRBCQuAl7ffy8n0vABfm-6HoSeX4yvwCqa-EI3zNHdRhmiKzmGZjuv0Rj1_ETWTT5FyutTCIWJDPsGWrxV2-mqe5DZW1BTP-TBDUYDOknPFSrbWOqNi8JWZ7Vfo4z-20r4fRrHsfWwKXaFWDf72iUoBIb-d_0-9C80eNRx7WOLMHG5g1IL4i8fwTX4n14fIFkuhruShFCsT4oWR1E0NGs2lGBlVUkjyu-EKmW8EWIM-Wp_TWhKdeNO72neptBGdmAH_pMEZlIs3pw1U8UUhT19VMCJnKTpLYnGU8YMqgsY-Ku1KGwqWSMs2kR80SMB3sQz2bZ3gARHKKIdWS-cJ0UbyjU4-qIPBNSVwtDqFhbTF5L9NfTCozHP3dfA5b_fFwMBncxnfHsG1NX0r3TqC-XOR4CrUPlZ8VS_cNZD2ZXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+11th+Biomedical+Engineering+International+Conference+%28BMEiCON%29&rft.atitle=A+Novel+Feature+Extraction+for+American+Sign+Language+Recognition+Using+Webcam&rft.au=Thongtawee%2C+Ariya&rft.au=Pinsanoh%2C+Onamon&rft.au=Kitjaidure%2C+Yuttana&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBMEiCON.2018.8609933&rft.externalDocID=8609933 |