A Novel Feature Extraction for American Sign Language Recognition Using Webcam

Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator's opinion. This paper introduces a simple and efficient algorithm for feature extraction to recognize American Sign Language alphabets from both static and dynamic gestures. T...

Full description

Saved in:
Bibliographic Details
Published in:2018 11th Biomedical Engineering International Conference (BMEiCON) pp. 1 - 5
Main Authors: Thongtawee, Ariya, Pinsanoh, Onamon, Kitjaidure, Yuttana
Format: Conference Proceeding
Language:English
Published: IEEE 01-11-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator's opinion. This paper introduces a simple and efficient algorithm for feature extraction to recognize American Sign Language alphabets from both static and dynamic gestures. The proposed algorithm comprises of four different techniques: Number of white pixels at the edge of the image (NwE), Finger length from the centroid point (Fcen), Angles between fingers (AngF) and Differences of angles between fingers of the first and last frame (delAng). After extracting features from video images, an Artificial Neural Network (ANN) is used to classify the signs. The result of these experiments is achieved up to 95% recognition rate, which is clearly to be the highest accuracy comparing with the other research worked in this field.
AbstractList Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator's opinion. This paper introduces a simple and efficient algorithm for feature extraction to recognize American Sign Language alphabets from both static and dynamic gestures. The proposed algorithm comprises of four different techniques: Number of white pixels at the edge of the image (NwE), Finger length from the centroid point (Fcen), Angles between fingers (AngF) and Differences of angles between fingers of the first and last frame (delAng). After extracting features from video images, an Artificial Neural Network (ANN) is used to classify the signs. The result of these experiments is achieved up to 95% recognition rate, which is clearly to be the highest accuracy comparing with the other research worked in this field.
Author Pinsanoh, Onamon
Kitjaidure, Yuttana
Thongtawee, Ariya
Author_xml – sequence: 1
  givenname: Ariya
  surname: Thongtawee
  fullname: Thongtawee, Ariya
  organization: Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
– sequence: 2
  givenname: Onamon
  surname: Pinsanoh
  fullname: Pinsanoh, Onamon
  organization: Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
– sequence: 3
  givenname: Yuttana
  surname: Kitjaidure
  fullname: Kitjaidure, Yuttana
  organization: Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
BookMark eNotj9FKwzAUQCMoqLNfoA_5gc2bJr1JHmvZpjA3UIePI0lvS2RLpe1E_17QPZ2Xw4Fzzc5Tl4ixOwEzIcDePzzPY7VZz3IQZmYQrJXyjGVWG1FIg4XOlb1k2TB8AECORgltr9i65Ovui_Z8QW489sTn32Pvwhi7xJuu5-WB-hhc4q-xTXzlUnt0LfEXCl2b4p-2HWJq-Tv54A437KJx-4GyEydsu5i_VY_T1Wb5VJWraRS6GKeIyjuPgFBrV5MKAA0a44O3zpnCFlpiLY3IqdbgfWFAeYUNeqECITZywm7_u5GIdp99PLj-Z3e6lr_d_k-z
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BMEiCON.2018.8609933
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538657249
1538657244
EndPage 5
ExternalDocumentID 8609933
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-664bab6060d7ade4c00f688bcb9aa8595736d3812ed70bb5804b46f6b14ce66f3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:37 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-664bab6060d7ade4c00f688bcb9aa8595736d3812ed70bb5804b46f6b14ce66f3
PageCount 5
ParticipantIDs ieee_primary_8609933
PublicationCentury 2000
PublicationDate 2018-Nov.
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov.
PublicationDecade 2010
PublicationTitle 2018 11th Biomedical Engineering International Conference (BMEiCON)
PublicationTitleAbbrev BMEiCON
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002684179
Score 1.7564652
Snippet Sign language is physical communication for contributing the meaning instead of using voice to demonstrate communicator's opinion. This paper introduces a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms American Sign Language (ASL)
Artificial Neural Network
Assistive technology
Feature extraction
Gesture recognition
Hand gesture recognition
Heuristic algorithms
Image edge detection
Thumb
Webcam
Title A Novel Feature Extraction for American Sign Language Recognition Using Webcam
URI https://ieeexplore.ieee.org/document/8609933
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64nTypbOJvcvBot7TNkvSos2MHreIUvY2meZGCdmOu4p9v0nYVwYuHQAgJgZe038vL970AnNvvh6GvtBdo-wtkgZaeDIzw0IyyDLnDNBfTnc5E8iKvY5cm56LVwiBiRT7DgatWd_l6kZUuVDaU3PozYdiBjohkrdVq4ykua4ndXI06zqfR8Oo2zsd3iaNvyUEz9NcbKhWETHb-N_ku9H-0eOS-RZk92MKiB8klSRaf-EacB1eukMRf61UtUSDWCyWbexgyy18LctPEJMnDhi1ku1VcAfLsWErvfXiaxI_jqde8jODlFu7XHudMpcqePagWqUaWUWq4lCpTUZq6jGUi5NpicYBaUKVGkjLFuOHKZ3YBuAn3oVssCjwAogTDETOKB9J20SIymc90GAa2pNTIQ-g5W8yXdfKLeWOGo7-bj2HbmbsW651Ad70q8RQ6H7o8q5brG0xqlgw
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64edCTyib-NgePduuPNMmOOjsmblXcRG-jaV7GQDuZq_jnm7TdRPDiIRBCQuAl7ffy8n0vABfm-6HoSeX4yvwCqa-EI3zNHdRhmiKzmGZjuv0Rj1_ETWTT5FyutTCIWJDPsGWrxV2-mqe5DZW1BTP-TBDUYDOknPFSrbWOqNi8JWZ7Vfo4z-20r4fRrHsfWwKXaFWDf72iUoBIb-d_0-9C80eNRx7WOLMHG5g1IL4i8fwTX4n14fIFkuhruShFCsT4oWR1E0NGs2lGBlVUkjyu-EKmW8EWIM-Wp_TWhKdeNO72neptBGdmAH_pMEZlIs3pw1U8UUhT19VMCJnKTpLYnGU8YMqgsY-Ku1KGwqWSMs2kR80SMB3sQz2bZ3gARHKKIdWS-cJ0UbyjU4-qIPBNSVwtDqFhbTF5L9NfTCozHP3dfA5b_fFwMBncxnfHsG1NX0r3TqC-XOR4CrUPlZ8VS_cNZD2ZXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+11th+Biomedical+Engineering+International+Conference+%28BMEiCON%29&rft.atitle=A+Novel+Feature+Extraction+for+American+Sign+Language+Recognition+Using+Webcam&rft.au=Thongtawee%2C+Ariya&rft.au=Pinsanoh%2C+Onamon&rft.au=Kitjaidure%2C+Yuttana&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBMEiCON.2018.8609933&rft.externalDocID=8609933