Solar Generation Forecasting by Recurrent Neural Networks Optimized by Levenberg-Marquardt Algorithm

Solar photovoltaic systems convert the solar energy into electric power. Many factors affect the solar power generation through solar cells. The factors include atmospheric conditions, trajectory of sun, weather conditions, cloud cover and the physical properties of solar energy plant that converts...

Full description

Saved in:
Bibliographic Details
Published in:IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society pp. 276 - 281
Main Authors: Awan, Shahid M., Khan, Zubair A., Aslam, Muhammad
Format: Conference Proceeding
Language:English
Published: IEEE 01-10-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Solar photovoltaic systems convert the solar energy into electric power. Many factors affect the solar power generation through solar cells. The factors include atmospheric conditions, trajectory of sun, weather conditions, cloud cover and the physical properties of solar energy plant that converts solar energy to electric power. The output power is mainly influenced by the incoming radiation and the characteristics of solar panel. Accurate and correct knowledge about these factors guarantees a reliable solar generation forecasting model. This paper proposes a solution for solar power generation forecasting by incorporating the effecting parameters with the use of Recurrent Neural Network (RNN)model. The RNN is further optimized by Levenberg-Marquardt Algorithm (LMA)to get better accuracy of forecasts. The obtained results confirm the suitability of proposed approach.
AbstractList Solar photovoltaic systems convert the solar energy into electric power. Many factors affect the solar power generation through solar cells. The factors include atmospheric conditions, trajectory of sun, weather conditions, cloud cover and the physical properties of solar energy plant that converts solar energy to electric power. The output power is mainly influenced by the incoming radiation and the characteristics of solar panel. Accurate and correct knowledge about these factors guarantees a reliable solar generation forecasting model. This paper proposes a solution for solar power generation forecasting by incorporating the effecting parameters with the use of Recurrent Neural Network (RNN)model. The RNN is further optimized by Levenberg-Marquardt Algorithm (LMA)to get better accuracy of forecasts. The obtained results confirm the suitability of proposed approach.
Author Awan, Shahid M.
Khan, Zubair A.
Aslam, Muhammad
Author_xml – sequence: 1
  givenname: Shahid M.
  surname: Awan
  fullname: Awan, Shahid M.
  organization: School of Systems and Technology, University of Management and Technology, Lahore
– sequence: 2
  givenname: Zubair A.
  surname: Khan
  fullname: Khan, Zubair A.
  organization: Al-Khawarizmi Institute of Computer Science
– sequence: 3
  givenname: Muhammad
  surname: Aslam
  fullname: Aslam, Muhammad
  organization: Department of Computer Science and Engineering, University of Engineering and Technology, Lahore, Pakistan
BookMark eNotkF1PwjAYhavRRMT9Ab3pHxj27dq1vSQEkAQh8eOadN3rbBwddkWDv16MXD05ycmTk3NNLkIXkJBbYCMAZu4X08l6NeIM9EhLA8qYM5IZpUEyw8pSCzgnAy6VyqEU6opkfe8rJrRkQjEzIPVz19pI5xgw2uS7QGddRGf75ENDqwN9QrePEUOiK9xH2x6Rvrv40dP1Lvmt_8H6r7bELwwVxiZ_tPFzb2Od6LhtuujT-_aGXL7ZtsfsxCF5nU1fJg_5cj1fTMbL3IOSKZdOc2AFgnPuOE4ILAvkypbGmPKYCm640rUGIREYqwstHOPS2hoUOFsVQ3L37_WIuNlFv7XxsDn9UvwCn5FZbQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IECON.2018.8591799
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509066841
1509066845
EISSN 2577-1647
EndPage 281
ExternalDocumentID 8591799
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IL
6IN
AAJGR
ABLEC
ABQGA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-5c82103e1ccc70944e63e27a6999644e329278d8145e100d384c025aad171cab3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:20 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-5c82103e1ccc70944e63e27a6999644e329278d8145e100d384c025aad171cab3
PageCount 6
ParticipantIDs ieee_primary_8591799
PublicationCentury 2000
PublicationDate 2018-Oct.
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationTitle IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society
PublicationTitleAbbrev IECON
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048504709
ssj0002683876
ssib042470056
Score 2.1816163
Snippet Solar photovoltaic systems convert the solar energy into electric power. Many factors affect the solar power generation through solar cells. The factors...
SourceID ieee
SourceType Publisher
StartPage 276
SubjectTerms Artificial neural networks
Autoregressive processes
Forecasting
Levenberg-Marquardt Algorithm
Numerical models
Optimization Techniques
Predictive models
Recurrent Neural Networks
Short Term Forecasting
Solar Generation
Solar power generation
Weather forecasting
Title Solar Generation Forecasting by Recurrent Neural Networks Optimized by Levenberg-Marquardt Algorithm
URI https://ieeexplore.ieee.org/document/8591799
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJyZALeItD4y4jR3HdkYErYrESxQktsqxL1CpL9p0gF-PL2mLkFiYYluWFd05Pt_lu-8IOVeRkxkXiuXaGybTXLEsBs9cznNrnVRQxnR7fX3_aq47SJNzscmFAYASfAYtbJb_8v3ULTFU1kauNZ2mNVLTqalytdZ7RwqpkdZy0zdJJNfUZHgqC2Xi8OWv82aitH2DpQIR3GVaq4V_VVgpDUx353-vtkuaP5l69HFjg_bIFkwaxPfRX6UVozQKnmIBTmcXCHGm2Sd9wiA70jJR5Oawo_AoweAL-hBOkPHwCzxOu0V2J8R_sTs7_8C9VNDL0dt0Pizex03y0u08X_XYqpoCG4YrQsESZ4J7FwN3zgXBSAkqBqGtQpcn9GKRCm284TIBHkU-NtKFC5G1nmvubBbvk_pkOoEDQjVWvLJJlgRFBwvvbFg55U5YEcYNyEPSQAkNZhVhxmAlnKO_h4_JNiqhQsidkHoxX8IpqS388qxU8TcBB6T9
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ED3pSA8a3PXi0sO122-7RKAQioBFMvJFu21USHgrLQX-9nV3AmHjxtG3TNJuZbqcz-803CF2JwPCEMkFSaRXhcSpIEjpLTEpTrQ0XLo_ptvqy96LuGkCTc73JhXHO5eAzV4Nm_i_fzswSQmV14FqTcVxC2xGXQhbZWuvdwxmXQGy56aso4GtyMjiXmVCh__bXmTNBXG9DsUCAd6naaulfNVZyE9Pc-9_L7aPqT64eftxYoQO05aYVZPvgseKCUxpEj6EEp9ELADnj5BM_QZgdiJkwsHPosX_kcPAFfvBnyGT05SxM6wC_EyDASFfPP2A3Zfhm_Dqbj7K3SRU9NxuD2xZZ1VMgI39JyEhklHfwQkeNMV4wnDsROia1AKfH90IWM6msojxyNAhsqLjxVyKtLZXU6CQ8ROXpbOqOEJZQ80pHSeRV7W280X7lmBqmmR9Xjh-jCkho-F5QZgxXwjn5e_gS7bQG3c6w0-7dn6JdUEiBlztD5Wy-dOeotLDLi1zd3-KwqE4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IECON+2018+-+44th+Annual+Conference+of+the+IEEE+Industrial+Electronics+Society&rft.atitle=Solar+Generation+Forecasting+by+Recurrent+Neural+Networks+Optimized+by+Levenberg-Marquardt+Algorithm&rft.au=Awan%2C+Shahid+M.&rft.au=Khan%2C+Zubair+A.&rft.au=Aslam%2C+Muhammad&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2577-1647&rft.spage=276&rft.epage=281&rft_id=info:doi/10.1109%2FIECON.2018.8591799&rft.externalDocID=8591799