Solar Generation Forecasting by Recurrent Neural Networks Optimized by Levenberg-Marquardt Algorithm
Solar photovoltaic systems convert the solar energy into electric power. Many factors affect the solar power generation through solar cells. The factors include atmospheric conditions, trajectory of sun, weather conditions, cloud cover and the physical properties of solar energy plant that converts...
Saved in:
Published in: | IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society pp. 276 - 281 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-10-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Solar photovoltaic systems convert the solar energy into electric power. Many factors affect the solar power generation through solar cells. The factors include atmospheric conditions, trajectory of sun, weather conditions, cloud cover and the physical properties of solar energy plant that converts solar energy to electric power. The output power is mainly influenced by the incoming radiation and the characteristics of solar panel. Accurate and correct knowledge about these factors guarantees a reliable solar generation forecasting model. This paper proposes a solution for solar power generation forecasting by incorporating the effecting parameters with the use of Recurrent Neural Network (RNN)model. The RNN is further optimized by Levenberg-Marquardt Algorithm (LMA)to get better accuracy of forecasts. The obtained results confirm the suitability of proposed approach. |
---|---|
AbstractList | Solar photovoltaic systems convert the solar energy into electric power. Many factors affect the solar power generation through solar cells. The factors include atmospheric conditions, trajectory of sun, weather conditions, cloud cover and the physical properties of solar energy plant that converts solar energy to electric power. The output power is mainly influenced by the incoming radiation and the characteristics of solar panel. Accurate and correct knowledge about these factors guarantees a reliable solar generation forecasting model. This paper proposes a solution for solar power generation forecasting by incorporating the effecting parameters with the use of Recurrent Neural Network (RNN)model. The RNN is further optimized by Levenberg-Marquardt Algorithm (LMA)to get better accuracy of forecasts. The obtained results confirm the suitability of proposed approach. |
Author | Awan, Shahid M. Khan, Zubair A. Aslam, Muhammad |
Author_xml | – sequence: 1 givenname: Shahid M. surname: Awan fullname: Awan, Shahid M. organization: School of Systems and Technology, University of Management and Technology, Lahore – sequence: 2 givenname: Zubair A. surname: Khan fullname: Khan, Zubair A. organization: Al-Khawarizmi Institute of Computer Science – sequence: 3 givenname: Muhammad surname: Aslam fullname: Aslam, Muhammad organization: Department of Computer Science and Engineering, University of Engineering and Technology, Lahore, Pakistan |
BookMark | eNotkF1PwjAYhavRRMT9Ab3pHxj27dq1vSQEkAQh8eOadN3rbBwddkWDv16MXD05ycmTk3NNLkIXkJBbYCMAZu4X08l6NeIM9EhLA8qYM5IZpUEyw8pSCzgnAy6VyqEU6opkfe8rJrRkQjEzIPVz19pI5xgw2uS7QGddRGf75ENDqwN9QrePEUOiK9xH2x6Rvrv40dP1Lvmt_8H6r7bELwwVxiZ_tPFzb2Od6LhtuujT-_aGXL7ZtsfsxCF5nU1fJg_5cj1fTMbL3IOSKZdOc2AFgnPuOE4ILAvkypbGmPKYCm640rUGIREYqwstHOPS2hoUOFsVQ3L37_WIuNlFv7XxsDn9UvwCn5FZbQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IECON.2018.8591799 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509066841 1509066845 |
EISSN | 2577-1647 |
EndPage | 281 |
ExternalDocumentID | 8591799 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IG 6IH 6IL 6IN AAJGR ABLEC ABQGA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-5c82103e1ccc70944e63e27a6999644e329278d8145e100d384c025aad171cab3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:20 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-5c82103e1ccc70944e63e27a6999644e329278d8145e100d384c025aad171cab3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8591799 |
PublicationCentury | 2000 |
PublicationDate | 2018-Oct. |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
PublicationDecade | 2010 |
PublicationTitle | IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society |
PublicationTitleAbbrev | IECON |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib048504709 ssj0002683876 ssib042470056 |
Score | 2.1816163 |
Snippet | Solar photovoltaic systems convert the solar energy into electric power. Many factors affect the solar power generation through solar cells. The factors... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 276 |
SubjectTerms | Artificial neural networks Autoregressive processes Forecasting Levenberg-Marquardt Algorithm Numerical models Optimization Techniques Predictive models Recurrent Neural Networks Short Term Forecasting Solar Generation Solar power generation Weather forecasting |
Title | Solar Generation Forecasting by Recurrent Neural Networks Optimized by Levenberg-Marquardt Algorithm |
URI | https://ieeexplore.ieee.org/document/8591799 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJyZALeItD4y4jR3HdkYErYrESxQktsqxL1CpL9p0gF-PL2mLkFiYYluWFd05Pt_lu-8IOVeRkxkXiuXaGybTXLEsBs9cznNrnVRQxnR7fX3_aq47SJNzscmFAYASfAYtbJb_8v3ULTFU1kauNZ2mNVLTqalytdZ7RwqpkdZy0zdJJNfUZHgqC2Xi8OWv82aitH2DpQIR3GVaq4V_VVgpDUx353-vtkuaP5l69HFjg_bIFkwaxPfRX6UVozQKnmIBTmcXCHGm2Sd9wiA70jJR5Oawo_AoweAL-hBOkPHwCzxOu0V2J8R_sTs7_8C9VNDL0dt0Pizex03y0u08X_XYqpoCG4YrQsESZ4J7FwN3zgXBSAkqBqGtQpcn9GKRCm284TIBHkU-NtKFC5G1nmvubBbvk_pkOoEDQjVWvLJJlgRFBwvvbFg55U5YEcYNyEPSQAkNZhVhxmAlnKO_h4_JNiqhQsidkHoxX8IpqS388qxU8TcBB6T9 |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ED3pSA8a3PXi0sO122-7RKAQioBFMvJFu21USHgrLQX-9nV3AmHjxtG3TNJuZbqcz-803CF2JwPCEMkFSaRXhcSpIEjpLTEpTrQ0XLo_ptvqy96LuGkCTc73JhXHO5eAzV4Nm_i_fzswSQmV14FqTcVxC2xGXQhbZWuvdwxmXQGy56aso4GtyMjiXmVCh__bXmTNBXG9DsUCAd6naaulfNVZyE9Pc-9_L7aPqT64eftxYoQO05aYVZPvgseKCUxpEj6EEp9ELADnj5BM_QZgdiJkwsHPosX_kcPAFfvBnyGT05SxM6wC_EyDASFfPP2A3Zfhm_Dqbj7K3SRU9NxuD2xZZ1VMgI39JyEhklHfwQkeNMV4wnDsROia1AKfH90IWM6msojxyNAhsqLjxVyKtLZXU6CQ8ROXpbOqOEJZQ80pHSeRV7W280X7lmBqmmR9Xjh-jCkho-F5QZgxXwjn5e_gS7bQG3c6w0-7dn6JdUEiBlztD5Wy-dOeotLDLi1zd3-KwqE4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IECON+2018+-+44th+Annual+Conference+of+the+IEEE+Industrial+Electronics+Society&rft.atitle=Solar+Generation+Forecasting+by+Recurrent+Neural+Networks+Optimized+by+Levenberg-Marquardt+Algorithm&rft.au=Awan%2C+Shahid+M.&rft.au=Khan%2C+Zubair+A.&rft.au=Aslam%2C+Muhammad&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2577-1647&rft.spage=276&rft.epage=281&rft_id=info:doi/10.1109%2FIECON.2018.8591799&rft.externalDocID=8591799 |