A Survey on Plant Disease Detection using Support Vector Machine

Agriculture is an important source of livelihood and Indian economy depends on agricultural production. It is important to detect the plant leaf diseases at early stage to increase the crop yield and profit. Image processing technique is used to detect the leaf diseases accurately since naked eye ob...

Full description

Saved in:
Bibliographic Details
Published in:2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT) pp. 292 - 295
Main Authors: Poojary, Harshitha, Shabari, Shedthi B.
Format: Conference Proceeding
Language:English
Published: IEEE 01-03-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Agriculture is an important source of livelihood and Indian economy depends on agricultural production. It is important to detect the plant leaf diseases at early stage to increase the crop yield and profit. Image processing technique is used to detect the leaf diseases accurately since naked eye observation of the diseases does not provide accurate result all the time especially during the early stage. It was done in five phases which are image acquisition, preprocessing of the acquired image, feature extraction, classification of the diseases and displaying the result. This paper provides a detailed survey about classification of the agricultural diseases by using Support Vector Machine classifier.
AbstractList Agriculture is an important source of livelihood and Indian economy depends on agricultural production. It is important to detect the plant leaf diseases at early stage to increase the crop yield and profit. Image processing technique is used to detect the leaf diseases accurately since naked eye observation of the diseases does not provide accurate result all the time especially during the early stage. It was done in five phases which are image acquisition, preprocessing of the acquired image, feature extraction, classification of the diseases and displaying the result. This paper provides a detailed survey about classification of the agricultural diseases by using Support Vector Machine classifier.
Author Poojary, Harshitha
Shabari, Shedthi B.
Author_xml – sequence: 1
  givenname: Harshitha
  surname: Poojary
  fullname: Poojary, Harshitha
  organization: Department of Computer Science and Engineering, NMAM Institute of Technology, Nitte, India
– sequence: 2
  givenname: Shedthi B.
  surname: Shabari
  fullname: Shabari, Shedthi B.
  organization: Department of Computer Science and Engineering, NMAM Institute of Technology, Nitte, India
BookMark eNotj11LwzAYRiMo6OZ-gV7kD7TmbT5758icDiYOnN6ONL7RyExL0wn79xbc1YHDw4FnQs5Tm5CQW2AlAKvvVtZurN2WFQNTGqkFB3FGJiC5UUzXSlySWc7fjLFKGW44uyL3c_p66H_xSNtEN3uXBrqIGV1GusAB_RBHf8gxfY67rmv7gb6Ptu3ps_NfMeE1uQhun3F24pS8LR-29qlYvzyu7HxdRNByKIRSUoi6abTSRoSgwAkNTH14CKihNg0PXjvR1IDBe1HJJkjGHWMjUWo-JTf_3YiIu66PP64_7k4n-R8KLUmo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCPCCT.2018.8574314
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISBN 1538607964
9781538607961
EndPage 295
ExternalDocumentID 8574314
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-4665449bb76784ff61a47106dc1fe7198b3fc7a4b91efcc425bf503a00bf5e573
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:15 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-4665449bb76784ff61a47106dc1fe7198b3fc7a4b91efcc425bf503a00bf5e573
PageCount 4
ParticipantIDs ieee_primary_8574314
PublicationCentury 2000
PublicationDate 2018-March
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-March
PublicationDecade 2010
PublicationTitle 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT)
PublicationTitleAbbrev ICCPCCT
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683830
Score 1.7969502
Snippet Agriculture is an important source of livelihood and Indian economy depends on agricultural production. It is important to detect the plant leaf diseases at...
SourceID ieee
SourceType Publisher
StartPage 292
SubjectTerms Accurate
Acquisition
Agriculture
Clustering algorithms
Diseases
Feature extraction
Image color analysis
Image segmentation
Segmentation
Support Vector Machine
Support vector machines
Title A Survey on Plant Disease Detection using Support Vector Machine
URI https://ieeexplore.ieee.org/document/8574314
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP1wO-nFH5v4mxw8mi0xbZPcHN3GPCiDTfE2mvSLeOlktoL_vUlbJoIXTy2FEvhKeS9f3vsewLVNpBPSJNRqYWmkjaAm55o6Z6xnEM6hCm7k2UI-vqjxJIzJudl6YRCxFp_hINzWZ_n52lahVTZUccC7qAMdqVXj1dr2U24T5TdbrHXHcaaH92k6T9NlkG-pQfvqrwyVGkKm-_9b_AD6P148Mt-izCHsYHEEe6PXTTs0A3twNyKLavOJX2RdkJBCVJJxc-5CxljWWquCBIH7Kwkhnp5wk-e6WU8eaikl9uFpOlmmM9omI9A3D_cljUJmsC-skR5rIucSnnmQYUluuUPJtTLCWZlFRnN01vr_0riYiYwxf8VYimPoFusCT4BELNOxZtbzLOGpU6aM5yRxbhzajKvcnkIv1GL13gy_WLVlOPv78TnshnI3Iq0L6JabCi-h85FXV_Xn-gZBRJYy
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAFHzYelAvfrTit3vwaNqN-djdmyVtabEthVbxVrKbt8VLIjUR_PfuJqEiePGUEAgLE8KbfTvzBuBOhUx7TIaOEp5yfCE9RyaucLSWyjAIrZFbN_JowWavvD-wY3Lut14YRCzFZ9ixt-VZfpKpwrbKujyw9c5vwG7gs5BVbq1tR-Uh5Ga7RWt_nEtFdxxF8yhaWgEX79Qv_0pRKYvI8PB_yx9B-8eNR-bbOnMMO5iewEFvvanHZmALHntkUWw-8YtkKbE5RDnpVycvpI95qbZKiZW4r4mN8TSUm7yU7XoyLcWU2Ibn4WAZjZw6G8F5MwU_d3ybGmyglQYH7msdurEpMzRMlKuRuYJLTysW-1K4qJUyf6bUAfViSs0VA-adQjPNUjwD4tNYBIIqw7Q8Q55iLg0rCRKpUcUuT9Q5tCwWq_dq_MWqhuHi78e3sDdaTieryXj2dAn7FvpKsnUFzXxT4DU0PpLipvx031y9mYM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Conference+on+Control%2C+Power%2C+Communication+and+Computing+Technologies+%28ICCPCCT%29&rft.atitle=A+Survey+on+Plant+Disease+Detection+using+Support+Vector+Machine&rft.au=Poojary%2C+Harshitha&rft.au=Shabari%2C+Shedthi+B.&rft.date=2018-03-01&rft.pub=IEEE&rft.spage=292&rft.epage=295&rft_id=info:doi/10.1109%2FICCPCCT.2018.8574314&rft.externalDocID=8574314